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Age-of-Information Oriented Scheduling for
Multichannel IoT Systems With Correlated Sources
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Abstract— Age-of-information (Aol) based minimization prob-
lems have been widely considered in Internet-of-Things (IoT)
networks with the settings of multi-source single-channel systems
and multi-source multi-channel systems. Most existing works
are limited to either the case of identical multi-channel or
independent sources. In this paper, we study this problem under
the identical and non-identical multi-channel, as well as the
correlated sources setting. This correlation defines the case when
updating a source’s Aol; others correlated to this one will also
reveal partial information. To tackle this Aol-based minimization
problem, we formulate it as a correlated restless multi-armed
bandit (CRMAB) problem. By decoupling the CRMAB problem
into IV independent single-armed bandit problems, we derive the
closed-form expressions of the generalized Whittle index (GWI)
and the generalized partial Whittle index (GPWI) under the
identical channel and the non-identical channel settings, respec-
tively. Then, we put forth the GWI-based and GPWI-based
scheduling policies to solve this Aol-based minimization problem.
In addition, we provide two lower numerical performance bounds
for the proposed policies by solving the relaxed Lagrange problem
of the decoupled CRMAB. Numerical results show that the
proposed policies can achieve these lower bounds and outperform
the state-of-the-art scheduling policies. Compared with the case
of independent sources, the performance of the proposed policies
in the case of correlated sources improves significantly, especially
in high-density networks.

Index Terms— Age-of-information (Aol), correlated sources,
correlated restless multi-armed bandit (CRMAB), generalized
Whittle index (GWI), generalized partial Whittle index (GPWI).

I. INTRODUCTION

NTERNET-OF-THINGS (IoT), which benefits from the
wide deployment of next-generation wireless networks,
plays an increasing role in daily life and industry such as
e-health, smart home, driving, and monitoring [1]. An IoT
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network typically consists of three parts: IoT devices, trans-
mission network, and base station (BS) [2], [3]. The IoT
devices, also known as sources, are often deployed artificially
or randomly to perceive the physical characteristic of the
environment, such as temperature, humidity, and pollution
level. By exploiting the transmission network, the perceived
samples are sent to the BS for information fusion, where they
are processed to extract meaningful information. The accuracy
of such extracted information depends on the freshness of the
perceived samples at the BS, playing a critical role in the
BS’s decision-making. Therefore, a fundamental problem that
arises in IoT networks is how to deal with the time-sensitive
information and to ensure its freshness [4].

Recently, age-of-information (Aol), which is defined as
the time elapsed since the generation of the latest packet
delivered to the destination, has gained much attention in the
literature [5]-[7]. Compared with conventional performance
metrics, such as delay and throughput, Aol provides a new per-
spective to quantify the freshness or accuracy of the samples
from a remote system. The focus of this work is to minimize
the average network-level Aol by scheduling the status updates
of these IoT devices.

Aol-based minimization problems are widely considered in
IoT networks with different system settings. Refs. [8]-[11]
study this problem with the setting of multi-source and single-
channel in IoT networks, where several sources (or IoT
devices) send their samples to the BS through a shared chan-
nel. Meanwhile, refs. [12]-[18] investigate this problem with
the setting of multi-source and multi-channel, where several
IoT devices report their state status to the BS using multiple
channels. However, these works assume that different channels
are stochastically identical. Recently, the non-identical (or
heterogeneous) multi-channel setting is considered in [19],
[20]. To address these Aol-based minimization problems, the
above works propose various scheduling policies, such as the
round robbin policy (i.e., the greedy or myopic policy) [8],
max-weight policy [9], MDP-based threshold policy [10], [11],
Lyapunov-based virtual queue policy [13], [14], stationary ran-
domized policy [16], and Whittle index (WI)-based scheduling
policy [16]-[19].

However, these works assume that different sources are
independent, ignoring their correlations. In practice, sam-
ples of different sources are usually relevant due to the
spatial and temporal correlation of the perceived physical
processes [21]-[27]. For example, Fig. 1 shows a video mon-
itoring system where several cameras (or IoT devices) are
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Fig. 1. A video monitoring system with multi-channel correlated sources.

deployed to monitor a specific area. There are some over-
lapped areas among these cameras since there are deployed
artificially or randomly. Therefore, when updating a device’s
status, others overlapping with this one will also reveal partial
monitoring information. In other words, the freshness (or Aol)
of the information of the overlapped devices will also reduce.
Another example is the forest fire monitoring system, where
several sensors are deployed to monitor the fire in an area.
The BS can infer a fire situation from some nearby sensors’
monitoring area based on the status of the scheduled sensors.
Thus, when updating a sensor’s status, its neighbors will also
reveal a partial fire situation. As a result, the BS can reduce
the frequency of status updates by exploiting the correlations
among [oT devices.

In this paper, we consider the Aol-based minimization
problem in the IoT networks under the setting of stochastically
identical and non-identical multi-channel, as well as the corre-
lated sources. We first formulate it as an MDP problem. How-
ever, it is difficult to solve this problem by using the traditional
value iteration or policy iteration methods [28]. First, its state
space is uncountable or approximately continuous due to the
correlation among arms; second, some approximate solutions
still suffer from high computational complexity and lack of
insights [16]-[19]. To overcome these, we further model this
problem as a correlated restless multi-armed bandit (CRMAB)
framework [29]. In this CRMAB problem, the player is the
BS, and arms are the correlated IoT devices; while rewards
and states are both the Aols.

There are two main challenges in solving this CRMAB
problem. First, the states of different sources are highly
relevant. As a result, it is difficult to decouple the CRMAB
problem into several single-armed bandit problems, which is a
core step for the RMAB problem to reduce the computational
complexity. Second, the system state space becomes uncount-
able or approximately continuous. The continuous state space
may lack the structure feature, such as the semi-universal
structure [30] and the monotonic structure [16], which is a
critical information for the RMAB problem to establish the
indexability and to drive the closed-form expression of the
WI. To conquer these challenges, we introduce a pending
state for each arm to approximately represent all the pos-
sible states that are resulted from other arms’ actions. This
pending state essentially captures the arms’ correlations and
the channels’ conditions. In this way, we can successfully
decouple the CRMAB into several independent single-armed
bandit problems. After that, we establish the indexability of
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each single-armed bandit problem and derive its closed-form
expressions of the generalized WI (GWI) for identical channel
and the generalized partial WI (GPWI) non-identical channel.
At last, a threshold-based scheduling policy can be constructed
to solve this Aol-based minimization problem.

The difference between this work and the existing ones and

the main contributions of this work are summarized as follows.

o We study the Aol-based minimization problem with the
setting of stochastically identical and non-identical multi-
channel, as well as the correlated sources. However, exist-
ing works are limited to either the case of independent
sources or the identical multi-channel.

o We put forth the GWI-based and GPWI-based schedul-
ing policies to solve the Aol-based minimization
problem under the identical and non-identical channel,
respectively.

o We provide two lower numerical performance bounds for
the proposed policies by solving the relaxed Lagrange
problem of the decoupled CRMAB problem.

o We conduct several simulations to evaluate the proposed
polices. Numerical results validate these lower perfor-
mance bounds and show that the proposed policies exhibit
the best performance among the compared policies. More
importantly, the adopted PCI model is more suitable for
high-density networks than the setting of independent
sources.

A. Related Work

Correlated sources in the context of Aol and IoT are
investigated in [21]-[27], which can be roughly classified
into two groups, i.e., the fully correlated information (FCI)
model and the partially correlated information (PCI) model.
The FCI model defines the case that multi-IoT devices’ status
information are required at the BS to finish a status update
process. Specifically, an IoT device’s status is successfully
updated if and only if all the IoT devices that are correlated
to this one have successfully updated their status at the same
time. Ref. [21] studies the Aol minimization problem under
the FCI model by modeling this problem as an episodic MDP
and develops a deep reinforcement learning method to solve
this problem. Similarly, ref. [22] investigates this problem in
the wireless camera networks where images from different
cameras are correlated with the overlapping fields of view
(FoV). Thus, these correlated cameras are required to jointly
update to the BS. In addition, ref. [23] considers an IoT
monitoring system where only partial status information of
the physical process can be observed by each IoT device.
Therefore, the BS requires different IoT devices’ samples to
re-construct such a physical process.

By contrast, the PCI model defines the case when updating
an IoT device’s status; others correlated to this one will also
reveal partial information. Thus, an unscheduled IoT device
can also update a partial status if one of its correlated sources
has successfully updated its status. This PCI model is studied
in [24]-[27]. Ref. [24] introduces a probability p. to model
this correlation, defining the probability that a packet in one
device will also bring updated information about other devices.
Then, it proposes a queue-based scheduling policy to reduce
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the sum Aol. Ref. [25] considers two correlated sources where
one source’s status update will influence another. By modeling
this correlation as the covariance between the samples of
the two sources, the authors propose an optimal-time based
scheduling policy. Compared with the above works and our
paper, authors in [26], [27] distinguish between source and [oT
device. They investigate the correlation among IoT devices,
i.e., multiple IoT devices are correlated when they observe
the same source. Thus, when updating a device’s status,
others that have the same observation will also be updated.
To solve this Aol-based minimization problem, they propose
an MDP-based scheduling policy. However, in this paper,
we consider the Aol-based minimization problem in IoT
networks under the PCI model by formulating it as a CRMAB
framework.

MAB is a basic framework for the sequential decision-
making problem [31], where a decision-maker (or player) must
select an arm from a set of arms with unknown distribution at
each time round. After that, the player will observe a reward
from the environment. According to the rewarding process,
MABS can be roughly classified into stochastic bandits, adver-
sarial bandits, and Markovian bandits (e.g., the RMAB)).
Traditional MABs assume that the arms are independent.
MABs with correlated arms are investigated in [32]-[37].
Refs. [32], [33] consider the combinatorial MAB problem
where the correlated arms are aggregated into a super arm.
The well-known unimodality MAB problem is considered
in [34]-[36], where the mean rewards of the arms are assumed
to have the unimodal structure or the quasi-concavity property.
Ref. [37] investigates the MAB problem with a graphical
structure in which the graph characterizes the correlation
among arms. By taking advantage of this correlation, the
above works can significantly reduce the total exploration
time to accelerate the algorithm’s convergence rate. However,
these works are considered under the framework of stochastic
bandits. By contrast, we study this problem under the RMAB
framework.

RMAB problem is a subset of the Markovian bandits
where states at each arm are considered and evolve with time
whenever the arm is active or not [29]. There are three main
concepts in the RMAB problem, i.e., decoupling, indexability,
and WI. The decoupling operation is the core step in reducing
computational complexity. While the indexability of an RMAB
problem is often difficult to establish, especially when the
structure information of the arm’s states is unknown [30]. The
WI measures how rewarding to activate an arm by given a
particular state. If an RMAB problem is proved to be index-
able, the WI can be derived in closed-form. Refs. [16]-[19]
apply the RMAB to the Aol-based minimization problem in
IoT networks. By exploiting the monotonic structure of the
Aol, ref. [16] derives the closed-form expression of the WI by
using the recursive iteration method and proposes a WI-based
scheduling policy to solve the Aol minimization problem.
Similar to the WI’s derivation process in [16], ref. [17] puts
forth a WI-based decentralized scheduling policy. The analysis
of the asymptotically optimal scheduling policy is investigated
in [18], [19] by using the fluid analysis. Ref. [19] extends
the concept of indexability to the non-identical multi-channel
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and proposes a sum weighted index matching (SWIM) policy
based on the concept of the partial index (PI).

However, there is no closed-form expression of the PI is
given in [19]. In this paper, we apply the RMAB with cor-
related arms into the Aol-based minimization problem in IoT
networks and derive the closed-form expression of the WI. The
works most relevant to our work are [16] and [19]. However,
they all assume that the sources are independent, ignoring the
correlation among them. More importantly, ref. [16] derives
the WI in the context of finite and integer states, while the
states in our work are uncountable and non-integer. Note that
the non-integer state brings a great challenge to derive the
closed-form expression of the WI.

The remainder of this paper is organized as follows.
In Section II, we introduce the system model and the
MDP-based formulation. The definitions and the objective of
the CRMAB framework are given in Section III. In Sections IV
and V, we present the GWI-based and GPWI-based scheduling
policies for the Aol minimization problem under the identical
and non-identical channel models, respectively. Two lower
numerical performance bounds of the proposed policies are
given in Section VI. The numerical results are given in
Section VII, and Section VIII concludes this paper.

II. SYSTEM MODEL

We consider an IoT network with set N/ of N IoT devices!
deployed in an area to monitor the environment, as shown
in Fig. 1. These IoT devices need to report their samples,
consisting of the devices’ state status, to the BS through set /C
of K channels. We assume that these IoT devices are powered
by batteries’ and transmit with constant power. The time is
slotted in ¢t = 1,2,---,7T. Assume that the number of IoT
devices is larger than the available channels, and each channel
can be occupied by at most one source at each time slot.
At the beginning of each time slot, the BS decides which IoT
devices should be scheduled to update their status through the
K available channels. These sources’ samples are correlated,
i.e., when updating one’s status, others correlated to this one
will also reveal partial information. The system’s goal is to
minimize the average network-level Aol by scheduling K
desirable IoT devices to update their status at each time slot.

A. Multi-Channel and Correlated Sources Model

We investigate two types of multi-channel models, i.e., the
stochastically identical channel model and the stochastically
non-identical channel model. Assume that each IoT device
transmits to the BS with constant power FP;.. Then, the
successful transmission probability that [oT device n transmits
on channel k is defined as p,x. The channel quality vector of
IoT device n is denoted by p,, = (pn1, .- -, Pnk ). We assume
that p, € (0,1) is independent of source n and channel k.

I'The ToT device is also referred to as source. Thus, IoT device and source
are interchangeable in this paper.

2 According to [38], ToT devices’ batteries are carefully selected according
to their surrounding environment, typically working for several months.
Moreover, the battery life can be estimated in advance and replaced in time
since the transmit power is fixed. Therefore, we do not consider the extreme
case where an IoT device cannot update its status due to a low battery.
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Fig. 2. A simple example illustrates the overlapped monitoring area among
two IoT devices or cameras.

For the identical channel model, all p,; are equal for
vk € K, ie., pp1 = ... = pnx. As a result, here we can
drop the index k& when formulating the Aol-based minimiza-
tion problem. However, in the non-identical channel model,
the channels are potentially unreliable because the wireless
channel suffers from diverse channel-fadings and geographical
environment. Therefore, the successful transmission probabil-
ities p,,), are different for Vk € IC and Vn € N.

According to [39], correlations among [oT devices can be
characterized by their locations and samples, referring to the
spatial correlation and the temporal correlation, respectively.
In this paper, we define an undirected graph, G = {N &},
to capture the spatial and temporal correlations among the N
IoT devices. In graph G, the 10T device set A is the set of
vertices, and £ is the set of edges, which can be further written
as an N-by-N matrix. Specifically, £ = [e1;ea;...;en],
where the k-th row vector is e, = [en1,€n2,...,e,n]| and
& €10,1]V*N_ Element e;; is the j-th source’s Aol-reduction
factor, defined as the status update degree of source ;7 when
the BS receives the samples of source i. Thus, the diagonal
elements are all equal to 1, i.e., e;; = 1,Vi € M. However,
matrix € is asymmetric (i.e., e;; # ej;, Vi,j € N) because
the geographical location and the hardware accuracy of there
IoT devices are non-identical. For example, in Fig. 2, the over-
lapping area accounts for 50% of IoT device 1’s monitoring
area and 30% of 10T device 2’s monitoring area. Thus, the
Aol-reduction factors of sources 1 and 2 are ey; = 0.5 and
e12 = 0.3, respectively, which is asymmetric.

B. Age of Correlated Information Metric

Without loss of generality, we adopt the generate-at-will
model as in [14], [16] to quantify the Aol evolution of the [oT
network. Specifically, whenever an IoT device is scheduled,
it immediately generates a packet for transmission. Let A,, ()
be the age of IoT device n at time slot ¢. It reduces to 1 when
IoT device n is scheduled and its transmission is successful;
when it is not scheduled or its transmission is failed, its age
is updated by the old value multiplied by an attenuation factor
a, and plus 1. Thus, the Aol evolution of IoT device n is

1, TX ,
At +1) = suc.cess )
Ap(t)an(t) + 1, otherwise,

where a(t) = [[;ez¢(1 — €jn) is the residual Aol degree
of source n when the BS schedules the IoT device set I; to

update their status. Here, I; denotes the set of IoT devices that
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are scheduled and their transmissions are successful at time
slot ¢. For example, in Fig. 2, assuming that the Aols of the [oT
devices 1 and 2 are A;(t) = 10 and As(t) = 10, respectively.
When IoT device 1 is scheduled and its transmission is
successful at time slot ¢ 4+ 1, their Aols are updated by
Aq(t+1) =1and A2(t+1) = 10x (1—0.3)+1 = 8 according
to (1). Note that, our Aol definition is different from that
in [14], [16], [21]-[23], [27], as the status update of source n
depends not only on itself but also on the scheduled sources
that are related to source n.

Let u,x(t) be a binary decision variable at time slot ¢, where
Uunk(t) = 1 means that source n is scheduled on channel &, and
unk(t) = 0 otherwise. Thus, we have Zgil unk(t) =1, Vk €
K since each channel can be occupied by at most one source at
each time slot ¢. The system’s goal is to minimize the average
network-level Aol by finding the optimal scheduling policy
7* subject to the above constraints and correlation matrix &€
in graph G, i.e.,

1 T N
min lim =Y > E[A7(1)]

m T—ooT (2a)
t=1n=1
st.oan(t) = H (1—ejn), VneN, Vt, (2b)
JETL
N
> um(t)=1, VkeKk, (2¢)
n=1
Eq. (1) and ul, () € {0,1}, Vke K, Vi, (2d)

where E[-] denotes the expectation operator and 7 is the
scheduling policy. The expectation is taken on the scheduling
policy 7. In the following, we refer to problem (2) as the
original problem.

C. MDP-Based Formulation

It is not difficult to see that the original problem
can be formulated as an MDP problem [10]. Let A £
{A1(t),...,An(t)} € INY be the system state space, i.e.,
the Aols of NV IoT devices at time slot ¢. Denote the action
space of the entire system by U = {u1y, ..., uni} € {0,1}V.
According to (1), the state transition probability that the
system state transits from a, = {A1(¢),..., An(t)} to a;41 =
{A1(t+1),...,An(t + 1)} under action u; € U is

H DPnk; TX success,
n,keTt
(1= pnr) TX failure
Payja (ue) = N glt e ’
H Pnk H (1 — pnk), otherwise,
n,k€L] n,k’ef;
(3)

where Z! is the set of (n, k) pairs that source n is scheduled
in channel k, ie., Z' = {(n,k)|uny = 1}. In addition, Z
represents the set of (n, k) pairs that source n is scheduled on
channel k and its transmission is successful; while Ttg denotes
the set of (n, k) pairs that source n is scheduled on channel %
but its transmission is failed. Hence, we have Z? = I; UT;.
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The objective of the MDP problem is to minimize the
long-term average network-level Aol over time horizon 7', i.e.,

1 T N
iy i g 2 2 B

s.t. (2b) (2¢) and (2d). “4)

It is difficult to solve this problem by using the traditional
value iteration or policy iteration method since the number of
system states is uncountable or continuous. There are some
works that discuss the continuous-state space MDP problem
by discretizing the continuous state space, such as the relative
value iteration (RVI) method [40]. Meanwhile, the other works
tackle this problem by using the function approximation for
the action value, such as the linear function approximation [41]
and the neural network function approximation [42]. However,
these solutions suffer from some performance loss or high
computational complexity. In the following, we introduce the
CRMAB framework to handle this problem.

III. CORRELATED RMAB FORMULATION

We first model the original problem as a CRMAB problem.
Then, we give the concept of negative subsidy for passive and
the objective of the CRMAB problem.

A. CRMAB-Based Formulation

As mentioned before, the RMAB problem can reduce the
computational complexity by decoupling an /N-dimensional
problem into N independent 1-D problems when computing
the WI. Then, a closed-form expression of the WI exists
if all N 1-D problems are indexable. Therefore, one needs
to prove the indexability of an RMAB problem first before
solving it. For an indexable RMAB problem, a WI-based
policy can be constructed by activating those K arms with
the largest WIs at each time slot. If the WI calculation of
the 1-D problem only relies on itself, we refer to it as a
strongly decomposable WI. Here, we investigate the weakly
decomposable WI to capture the correlations among sources.
We will show that the strongly decomposable WI is a special
case of the weakly decomposable WI. Therefore, we refer to
the latter as generalized WI (GWI).

In the following, we model the original problem (2) as a
CRMAB problem where the player is the BS, and the arms
are the correlated sources. At the beginning of each time slot,
the player decides which arms should be scheduled to update
their state status. Then, the player will observe rewards A(t) =
{A1(t),..., An(t)} at the end of each time slot, i.e., the Aol
evolution in (1). For convenience, let d,, ; denote the state of
arm n at time slot ¢. Note that the state at each arm is the same
as the reward, i.e., A,(t) = d, ;. According to the selection
action wu,,(t), state d,, ; can be classified into the passive set
unk(t) = 0,Vk € K and the active set ), u,(t) # 0.

The state transition probability when source n is scheduled
to channel k& at time slot ¢ and its transmission is failed is

P{A,(t+ 1) = dp 1, (t) + 1]
An(t)=dn 1, unk(t)=1} =1=pnr, (5)
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while its transmission is successful is

In addition, the state transition probability when source n is
not scheduled is given by

P{A, (t+1)=dp 10 (t)+1|An(t) =dn 1, unk(t)=0} =1,
)

where {A,(t + 1)|A,(t), unk(t)} denotes the state transition
process of source n that state A,,(¢) moves to state A, (t+ 1)
by taking the action wy(t).

However, it can be seen from (5)-(7) that the state at each
arm still depends on the others’ actions (i.e., o), resulting in
uncountable or continuous state space. To overcome this, we
introduce an average residual Aol degree &, € (0, 1] for each
arm, which is given by

an=E | [[(A-en)|, VneN, (8)

JET}

where the expectation is taken on the scheduling strategy over
the time horizon T (i.e., set If]). Therefore, we can replace
ay, (t) with @, in (5) and (7). As a result, there are only two
possible states for each arm at next time slot ¢ 4 1, i.e., 1
or dy, 10, + 1.

Next, we show why the residual Aol degree «,(t) can be
replaced by the average residual Aol degree &,,. First, the
BS is interested in the trends of the Aol growth of different
sources over time slot ¢, rather than the specific value of
the Aol at each source [16]. This growth trend essentially
captures the correlation among arms and the condition of
different channels. Second, the IoT network will converge to
a stationary state (i.e., the average network-level Aol is fixed)
for a given scheduling policy 7. After achieving this stationary
state, the scheduling strategy Ig changes periodically, as well
as the residual Aol degree «,(t). Thus, the average residual
Aol degree a,, will be a constant and independent of the
time slot ¢, i.e., E[a,(t)] = @, revealing the Aol growth
trends among sources. In the following, we refer to this
problem that using &, in (5)-(7) as the decoupled CRMAB
problem.

B. Objective of the Decoupled CRMAB Problem

We adopt the concept of subsidy for passivity as in [29], [30]
to construct the objective of the decoupled CRMAB problem.
Here, we use the negative subsia’y3 (i.e., —m) for passivity
because our objective is to minimize the average network-level
Aol. The infimum m that is required to move a state from the
active set to the passive set measures the attractiveness of an
arm to be scheduled. Therefore, the states at each arm can be
divided into the active set and the passive set with a particular
m. This reveals the role of the solution for solving an RMAB
problem, i.e., activates K arms with the largest m at each time
slot .

3The negative subsidy is also known as tax [29].
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Therefore, the objective of the decoupled CRMAB problem
is to minimize the average network-level Aol plus the negative
subsidy for passivity —m, i.e.,

N
min Tlgréo Z E[J,]

:ZlT K
st Jn == DD (An (8) = mi (1= unk(t)))
t=1 k=1
(2¢) (2d) and (8), )

where my, is the subsidy for passivity of channel k. After
introducing the average residual Aol degree &, the above
problem can be decoupled into N single-armed bandit sub-
problems. In the following, we focus on each sub-problem
and drop the index of source n.

IV. GWI-BASED SCHEDULING POLICY UNDER
STOCHASTICALLY IDENTICAL CHANNEL

In this section, we first give the concepts of indexability
and GWI for the CRMAB framework. Then, we prove that
the CRMAB problem is indexable and derive the closed-form
expression of the GWI. Finally, we propose the GWI-based
scheduling policy to solve the problem (9).

A. Definitions of Indexability and GWI

In the following, we can drop the index of channel £ in
the identical channel model. Therefore, there are only two
possible actions (i.e., active v = 1 or passive u = 0)
for each arm. For convenience, we assume that d, ; and
d are interchangeable. According to [29], the single-armed
bandit problem can also be viewed as an MDP. Let V,,(d)
be the differential value function at the initial state d with
negative subsidy —m, representing the minimum expected
total rewards that can be accrued from a single-armed bandit
process.

The Bellman equation of the single-armed bandit is

Vin (d) + J* = min [V,,, (d;u =0),V,, (d;u=1)], (10)

where J* is the optimal average reward and V,, (d;u) is
the expected total rewards obtained by taking action u under
the optimal policy. According to state transition probabilities
(5)-(7) and the objective function in (9), the above Bellman
equation can be rewritten as in Eq. (11), shown at the bottom
of the next page, where the initial condition is V;,,(1) = 0.
Thereafter, we have the following definitions.

Definition 1 (Passive Set): Let P(m) be the set of states
d that the single-armed bandit is optimal to passive with the
subsidy m. It satisfies the following condition,

Pim)={d: Vi (d;u=0) <V, (d;u=1)}  (12)

Definition 2 (Indexability): An arm is indexable if the pas-
sive set P(m) of the single-armed bandit process monotoni-
cally increases from () to the whole state space as m increases
from —oo to +00. A CRMAB problem is indexable if and
only if every arm is indexable.
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Definition 3 (GWI): If an arm 1is indexable, its GWI
W(d, @) is the infimum subsidy m that makes the scheduling
decisions (active, passive) equally desirable at state d, i.e.,

W(d,d):i;llf{m: Vi (dyu=0)=V,, (d;u=1)}.  (13)

B. GWI-Based Scheduling Policy

We next investigate the indexability of the CRMAB problem
in (9) and derive the closed-form expression of the GWI by
solving the Bellman equation (10) or (11). As pointed out
n [16], [30], the optimal solution for this Bellman equation
is a threshold policy, i.e.,

Proposition 1: For the single-armed bandit problem with
the average residual Aol degree & € (0,1], the optimal
scheduling policy for solving the Bellman equation in (10) or
(11) is a threshold policy. An arm is scheduled when d > D
and passive when 1 < d < D, where the threshold D is given
by

a(l=p)lp—m)+ (m—1)

= — O<a<l,
D= pa(2—p—(1 —g)a) (14)
(1-p) _
| 1-m+—", a=1.
p
Meanwhile, the optimal average reward J* is given by
1+Z—pmn p(n+p+pa— Da)
it 1 1+pa)(1—a)

(1=p)" = (m? +2)p* + 2mp
2p(1 —p)

where the upper part of (15) is obtained under the case of

0<a<l1and

)@:]‘7

i =logs (1-D(1-a)) -2,
7 a(l—p)(Dp+1-0p) (16)
1-(1-pa

Proof 1: See Appendix A.

Remark 1: From Proposition 1, we can see that the thresh-
old D is a linear function of subsidy m in the case 0 < & < 1.
In other words, threshold D increases when m changes from
—oo to +0o as 0 < & < 1. Thus, there exists an m™ such that
the passive set P(m) = 0, i.e., D(m*) = 1. Therefore, it is
sufficient to show that the passive set P(m) monotonically
increases from () to the whole state space as m increases from
—o0 to +00. According to Definition 2, we conclude that the
CRMARB problem in (9) is indexable since every single-armed
bandit n is indexable.

Based on this indexability, we can derive the closed-form
expression of GWI W (d,&) by isolating m from (14).
According to Definition 3, W (d, &) is the infimum subsidy m
that makes the scheduling decisions (active, passive) equally
desirable in state d. Hence, threshold D must be da + 1.
Substituting D = da + 1 to (14) yields

1+pda(l—
p@(d—l—l)—kw , O<a<l,
m(d, @) = 1-a(1-p)
’ p2+dp+1 _—
p '

a7
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Algorithm 1 GWI-Based Scheduling Policy Under the
Stochastically Identical Channel Model

1: Initialize: the parameters of K, N, T, p,,&, A, (1) = 1.

2: for each time slot ¢t =1,2,...,7T do

3:  Compute each arm’s GWI by using (17)

4:  Schedule arms with K largest values of W (d, @)

5 Update each arm’s Aol according to (1)

6:  Calculate & according to (8) or (19)

7: end for

Let W (d,&) = m(d,a) be the GWL In the following,
we provide two methods to compute the average residual Aol
degree & for the centralized and decentralized systems.

First, when the scheduling actions and the correlation matrix
& are known to the BS in the centralized system, the average
residual Aol degree &, of bandit n can be calculated by
using (8). We refer to this method as the realtime residual
Aol degree.

Second, the average residual Aol degree a,, can be esti-
mated from the historical Aol A,,(¢) when the prior informa-
tion is unknown in the distributed system. According to (1),
the Aol evolution can be generalized as

Ap(t+1) = Ap(t)a, + 1. (18)
This is a linear equation with slope &, which needs to be
estimated. Let H, = A,(t+ 1) —1 for t = {1,2,...,t} and
H,=A,(t)—1fort={1,2,...,t}, the estimated slope &,
can be obtained by using the least squares estimation (LSE)
method, i.e.,

A — 25:1 (Hiﬁ — Hr) (H% — Hy)

n= — ; (19)
ZE:l (Hﬂﬂz‘ - Hm)Q
where H, = YS! (A.(i))—1)/t and H, =

S (A, (i) — 1) /t. Notice that the future reward A, (£ + 1)
can be predicted from its historical rewards A, (t) by using
the linear prediction filter coefficients (LPC) method [43].
Thus, we refer to (19) as the estimated residual Aol degree.

Finally, we present the GWI-based scheduling policy for the
CRMAB problem of (9), as shown in Algorithm 1. For any
0 < & <1, at each time slot ¢, the BS activates the arms with
K largest values of the GWIs. Specifically, at the beginning of
each time slot ¢, the BS calculates each arm’s GWI using (17).
Then, it activates the arms with K largest values of GWIs to
update their state status. The BS updates each [oT device’s Aol
according to their transmission outcomes. At last, the average
residual Aol degree &, is calculated by using (8) or (19).
Algorithm 1 repeats these steps until it reaches the stopping
time 7.
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V. GPWI-BASED SCHEDULING PoLICY UNDER
STOCHASTICALLY NON-IDENTICAL CHANNEL

We first give the definitions of the partial indexability and
the GPWI in Section V-A. Then, we prove this problem is
partial indexable and derive the closed-form expression of the
GPWI. Finally, we propose a GPWI-based scheduling policy
to solve the CRMAB problem (9) in Section V-B.

A. Definitions of Partial Indexability and GPWI

We start with the single-armed bandit process in the
CRMAB problem of (9), which can be viewed as an MDP
problem. Consequently, we can drop the index of source
n. In the non-identical channel model, each IoT device has
K + 1 possible actions to choose from. Specifically, u =
{0,1,2,..., K}, where © = 0 means that this bandit is
passive. The Bellman equation of this single-armed bandit
process can be written as

Vim(d)+J* = min

we{0, 1, K}

uE{O,HE?.,K} {r“(d) + %: Para(u) Vs (d )}7
(20)

Vin(d,w)

where Py q(u) is the state transition probability that the bandit
transfers from state d to state d’ when taking action u. Term
r,(d) denotes the sum of the immediate reward and the
negative subsidy —m by taking action u under state d, and
m = {my,ma,...,mg} is the subsidy vector for the K
channels.

Compared with the identical channel model, here, an IoT
device that is scheduled in different channels will have distinct
rewards at time slot t. According to (20), the decision of
choosing channel k& depends not only on the subsidy of this
channel but also on the subsidies of others. Therefore, there
is no longer a single threshold (or subsidy) that divides the
state spaces into passive set and active set. Consequently, the
Bellman equation can be rewritten as,

Vi (d) + J*

= min
uef{0,1,...,.K}

mkin Vi (d;u=0), Vi, (d;u=k)],

Vm (d, u)

= min

21
ue{l,....K} (21

where V;,,, (d; u = 0) is the sum of the subsidy my and the
immediate reward plus the total future rewards when taking
action u = 0 with state d on channel k.

In fact, Eq. (21) can be decomposed into K indepen-
dent single-armed bandit processes with actions v = 0 and
u = 1 since the K non-identical channels are stochastically
independent. The proof is given in Appendix B. The single-
armed bandit process can be regarded as an MDP. As a result,
the Bellman equation of the above MDP problems can be

0)=da+1-m+Vy,(da+1),
Vin (diu=1)=p+ (da+1)(1 = p) + Vi (1)p + Vin(da + 1)(1 — p),

(1)
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solved independently as the same in the identical channel
model. Before presenting the main results in this section,
we give the following definitions by generalizing the concepts
in Section IV to the non-identical channel model [19].
Definition 4 (Passive Set): Given the subsidy vector m, the
passive set Py (m) is the set of states d such that it is optimal
to passive for channel k. It satisfies the following equation,

Pul) = {d: Vi (d) > min Vi, ()}, (22)

where u € {0,1,2,...,K}.

Let m_j be the subsidy vector of all channels except for
channel k. Meanwhile, let m’ = [m],,mi_j] be a new subsidy
vector by fixing all the subsidies in 771_j, but changing the
value of mj.. Then, the partial indexability is defined by

Definition 5 (Partial Indexability): Given the subsidy vec-
tor 7 and fixing the subsidy vector m_, an arm is partially
indexable for channel k if the passive set Py (m’) of the
single-armed bandit process increases from () to the whole
state space as mj, increases from —oo to +0o. A CRMAB
problem is partially indexable if and only if all arms in the K
non-identical channels are partially indexable.

Definition 6 (GPWI): Given the subsidy vector 17 and fix-
ing the subsidy vector m_y, if an arm is partially indexable
for channel k, its GPWI Gy, (d, &) is the infimum subsidy my,
that makes the scheduling decisions (active, passive) equally
desirable at state d, i.e.,

Gy, (d,@) = inf {m; Vi (diu = 0) = Vi (dju = k)}.

Tﬂ/k

(23)

Unlike GWI, the GPWI of channel k is defined by all
channels’ subsidies rather than only channel k. Hence, the
GPWI is an N x K matrix under the non-identical channel
model for the decoupled CRMAB problem.

B. GPWI-Based Scheduling Policy

In the non-identical channel model, the optimal solution
for the Bellman equation in (21) under channel £ is also a
threshold policy. Hence, we have the following proposition.

Proposition 2: Given the subsidy vector 7 and fixing the
subsidy vector 1m_g, for the single-armed bandit problem, the
optimal scheduling policy for solving the Bellman equation
(21) under channel £ is a threshold policy. An arm is scheduled
when d > Dj and passive when 1 < d < Dy, where the
threshold Dy, is given by

a(l —pr)(px — mi) + (my — 1) _

— — , 0<a<l,
Dy = Pra(2 —Pkl— (1 —gk)a)
_(1_mk+ﬂ>7 _—
Pk
(24)

Meanwhile, the optimal average reward J;' is given by

L+ Zy — pemgig | pr(fin + pr + pra — Di@)

Y

Jr — Py + 1 (I +pen)(1 - a)
R e T R ) e L
2px(1 — pr) ' ’

(25)
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where the upper part of (25) is obtained under the case of
0<a<l1and

np =logy (1 — Dip(1 —a@)) — 2,
7 = a(l — pr)(Drpr + 1 — pi)
1-— (]. — pk)o_z ’

Proof 2: See Appendix B.

Remark 2: Following the same argument in
Subsection IV-B, we can conclude that the CRMAB
problem in (9) is partially indexable since every bandit n in
different channel & is partially indexable.

Also, by substituting D = da + 1 to (24), we have

(26)

mk(d, d)

1+ prda(l —
(pkd(d—f—l)-i- +prdal pk)), 0<a<l,
) 1—a(l —pk)
pk+dpk+1’ _—
P
(27)

According to Definition 6, the GPWI for bandit n under
channel k is given by

1+ preda(l — ppk
(pnka(d+1)+ + prrda( pk))

1—a(l —puk)
Gnk(d,@)z O<a<l,
p%k+dp7zk+1 =1

DPnk
(28)

where & is the average residual Aol degree which can be
calculated by (8) or (19).

We now return to the decoupled CRMAB problem in (9).
Based on the above GPWIs, this problem can be transformed
into a maximum weighted matching (MWM) problem, i.e.,

N K
Z Z Gritnk

n=1k=1

max
u,k€{0,1}

N
s.t. Zu"k =1, VkeKk

n=1

K
Zunkgl, Vn e N.

k=1

(29)

Therefore, the GPWI-based scheduling policy is performed by
activating the arms with u,; = 1 at each time slot ¢, as given
in Algorithm 2.

VI. PERFORMANCE ANALYSIS

In this section, we give two lower numerical performance
bounds for the proposed policies under the stochastically iden-
tical and non-identical channel models. These lower perfor-
mance bounds are obtained by solving the Lagrangian problem
of the relaxation version of the decoupled CRMAB problem in
(9). In the CRMAB problem, the number of IoT devices that
should be scheduled at each time slot is strictly limited to K.
However, in the relaxed problem, we allow that the number
of long-term (i.e., the total time horizon 7") average scheduled
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Algorithm 2 GPWI-Based Scheduling Policy Under the
Stochastically Non-Identical Channel Model

1: Initialize: the parameters of K, N, T, p,,&, A, (1) = 1.

2: for each time slot ¢t =1,2,...,7T do

3:  Compute each arm’s GPWI by using (28)

4:  Obtain the decision variable u,; by solving the MWM

problem in (29)

5 Schedule arms according to the decision variable w,
6:  update each IoT device’s Aol according to (1)
7

8

Calculate & according to (8) or (19)
: end for

IoT devices is equal to K. This indicates that the achievable
performance by solving the relaxed problem will be better than
that of the GWI-based and GPWI-based policies, providing a
lower performance bound for the decoupled CRMAB problem.

We first present the relaxed problem and its Lagrange dual
problem. The original problem is rewritten as

1 T N
min 7> > E[An(t)]

(30a)
t=1n=1
st.an=E | [[(A—en)|. YneN v (30b)
JETL

N
> uni(t) =1, VkeK, (30c)

=1
Eq. (1) and wun,(t) € {0,1}, V. (30d)

To be consistent with the concept of negative subsidy
for passive, the constraint (30c) can be transformed into
Zﬁle (I —unk(t)) = N — 1. Hence, the relaxed problem

is given by
A
min - > Y E[An()]
d t=1 n=1
TR
st o ;;E [(1—unk(t)]=N—-1, Vkek,
(30b) and (30d). (31)
Then, the Lagrangian function of (31) is defined as
T
= inf Z < > (B [An(t)]
t=1
K K
- Z my (1 — Unk’(t)))> + ka(N -
k=1 k=1
(32)

where m = {mi,ma,...,mg} is the Lagrange multiplier
vector for the K distinct channels. Note that the Lagrange
multiplier my, is equivalent to the subsidy m but has different
physical meanings.

Mathematically, it is difficult to solve problem (32) as the
infimum operates on the whole system state space. This space
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can be infinity when 7" and N are sufficiently large because of
the correlation among arms. However, we observe that the first
term of the objective function in (32) is essentially the decou-
pled CRMAB problem of (9). Hence, we can replace the
first term with Zgzl J,:, where the expression of J;; is given
in (15) for the identical channel model and in (25) for the
non-identical channel model. As a result, we can obtain the
Lagrange dual problem of (31). By solving this dual problem,
we further provide a lower performance bound for the relaxed
problem (31).

For the identical channel model, each 10T device only has
two possible actions. Thus, the Lagrange dual problem of (31)
can be written as

max I'(m)

m

N
=Y Ji+m(N-K)
n=1

(30b) and (30d).

s.t. T'(m

(33)

It is easy to solve this dual problem since .J;; in (15) is a

concave function of m (please see the proof in Appendix C).

Hence, the optimal solution m™* can be obtained by solving
G(m)/Om =0, i.e.,

Zgi% + (N —-K)=0, 0<a<l,
* n=1
(N-K)>0 (1=p)+ N o
Zg=1pn

(34)

where m* is a numerical value in the case of 0 < & < 1 and
can be obtained by using the Newton method.

For the non-identical channel model, there are total K +
1 possible actions for each IoT device. According to Appendix
B, the Bellman equation in (21) can be decomposed into K
independent single-armed bandit processes with actions u =
0 and u = 1. As a result, the Lagrangian function in (32) can
be transformed into

N K K
DD Tty mu(N —

=1k=1 k=1

K N
> <Z T 4 mp(N — 1)), (35)
n=1

k=1

3

where J, is given in (25). It is equivalent to solve the
following Lagrange dual sub-problem of channel k since the
K distinct channels are independent. Thus, we have

max I'(my,)
my,

Z s mp(N = 1)

(30b) and (30d)

s.t. T(my) =

(36)

Note that Eq. (36) can be regarded as the Aol-based mini-
mization problem with only one available channel. As a result,
we can solve it using the same method as that in the identical
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Algorithm 3 Computing the Lower Performance Bounds

Under Both Channel Models

1: Initialize: the parameters of K, N, T,p,,&, A, (1) = 1.

2: for each time slot t =1,2,...,7T do

3:  Compute each IoT’s GWI or GPWI using (17) or (28)

4:  Obtain the multiplier m* or mj; using (34) or (37)

5 Schedule the IoT devices whose GWIs or GPWIs over
m* or maxy m*

6:  Update each arm’s Aol according to (1)
7:  Calculate & according to (8) or (19)
8: end for

channel model. Therefore, the optimal Lagrange multiplier for
channel k is

al a‘]:;k _ _
> +N—-1=0, O<a<l,
mt — el 8mk
r =
N =D 0 =pa) 4N
ZnNzlp”k’
(37

By solving the K sub-problems, we can obtain the optimal
Lagrange multiplier vector m* = {m}, m5,... ,mj}.

This relaxed problem reveals the role of subsidy m as
the Lagrange multiplier and the asymptotically optimality of
the proposed policies for the decoupled CRMAB problem.
First, under the relaxed constraint, the proposed policies are
implemented by activating those arms whose indexes at current
states are over a constant m™* at each time slot. Second,
the constant m™ is the Lagrange multiplier that makes the
relaxed constraint satisfied, or that achieves the maximum in
the dual problem in (33) and (36). Moreover, according to
the optimization theory [44], the solution of the Lagrange
dual problem (i.e., m*) provides a lower performance bound
to the relaxed problem. Therefore, Eqs. (34) and (37) are
asymptotically optimal policies for the problem (9).

Finally, we give an algorithm to compute these lower per-
formance bounds, as shown in Algorithm 3. At each time slot
t, the BS calculates each IoT device’s GWI or GPWI by using
(17) or (28). Meanwhile, the optimal Lagrange multiplier m*
or m* is calculated according to (34) or (37). Then, the BS
compares the GWIs with m™ for the identical channel model,
or compares the GPWIs with mj, for the non-identical channel
model. It schedules the IoT devices whose indexes are over
than m™* or maxy m*. After transmissions, the BS updates
each IoT device’s Aol according to (1). Based on the updated
Aols and the correlation matrix &, the average residual Aol
degree & can be calculated by using (8) or (19). Algorithm 3
repeats these steps until reaching the stopping time 7'.

VII. SIMULATION RESULTS

We conduct several simulations to evaluate the performance
of the GWI-based and GPWI-based scheduling policies with
different network settings. The simulation parameters are
chosen from the 3GPP standard [45]. All numerical results
are obtained from 10* Monte Carlo (MC) trials.
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Fig. 3. The IoT network scenario in a (40 x 40) m? area with N = 4 IoT
devices in (a) and N = 30 IoT devices in (b).

We first consider two IoT network scenarios in a (40 x
40) m? square area, as shown in Fig. 3. The number of IoT
devices in network scenario I (Fig. 3a) and network scenario II
(Fig. 3b) are N =4 and N = 30, respectively. The locations
of N IoT devices are generated by using the homogenous
Poisson point process (HPPP) with user density parameter A =
N/(nR?), where R = 20 m is the radius of the largest circle
in this square area.

We adopt the Indoor-Mixed office model [45] to capture the
LoS component. Thus, the successful transmission probability
of IoT device n is given by

1, Ln,no < 1.2m,
Lppo—1.2
- . n,m é . )
po =13 AP A7 ) pams b =0
L, —6.5
exp _)?),0276) -0.32, 6.5m < L,, 5,,

(38)

where L, ., is the Euclidean distance between IoT device
n and BS ng. It is sufficient to model the identical channel
model by only considering the LoS component. However,
for the non-identical channel model, we consider the NLoS
component in the successful transmission probability. We use
the random variable &,; to model NLoS component that IoT
device n is scheduled on channel k, i.e., pnx = &ngppn Where
&nk € (0, 1) follows the uniform distribution.

For the PCI model, the spatial correlation* among two
sources is assumed to be inversely proportional to their dis-
tance [39]. Therefore, element e;; in correlation matrix £ can
be calculated by e;; = w; exp(—~xL; ), where w; € (0,1)
is the weighting factor of source i, reflecting the importance
of source ¢ in the IoT network. Term L; ; is the Euclidean
distance between sources ¢ and j. In addition, x is the
correlation parameter that controls the strength of correlation,
i.e., a bigger (or smaller) x corresponds to a weaker (or higher)
correlation. In the following, we set « to 0.05. Notice that
matrix £ is asymmetric since w; is a random variable for
different IoT devices.

Fig. 4 shows the average network-level Aol of the
GWI-based and GPWI-based policies by using the realtime
residual Aol degree & and the estimated residual Aol degree &
in the network scenario I under the identical and non-identical

4Here we ignore the temporal correlations among sources to focus our
discussion on the essence of the proposed scheduling policy.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on December 30,2022 at 03:05:27 UTC from IEEE Xplore. Restrictions apply.



TONG et al.: Aol ORIENTED SCHEDULING FOR MULTICHANNEL IoT SYSTEMS WITH CORRELATED SOURCES

Non-identical channel model|

T .- it e
[ Y
- P = P

i ;;_-f;_‘f,:.'_’ >

Identical channel model

Average network-level Aol

—4— GPWI-based policy using estimated &
—— GPWI-based policy using realtime &
—-B-— GWi-based policy using estimated &
—-p-= GWL-based policy using realtime a

20 40 60 80 100 120 140 160 180 200
Time slot ¢

Fig. 4. The performance of the GWI-based policy with the realtime residual
Aol degree & and the estimated residual Aol degree & in the network
scenario I when N =4 and K = 2.
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Fig. 5. The residual Aol degree of different IoT devices v.s. time slot ¢
in network scenario I when N = 4 and K = 2 by running the GWI-based
policy with the estimated and realtime residual Aol degree.

channel models. The realtime & is obtained by (8) and the
estimated & is obtained by (19). The number of available
channels is K = 2 and the average network-level Aol is
calculated by (22:1 PO An(z)) /t.

We can see from Fig. 4 that the performance of GWI-based
and GPWI-based policies with the realtime & is slightly better
than that of estimated & under both channel models. This is
because that the realtime & case has the prior information of
the correlation matrix £ and each time’s scheduling actions.
It can be also seen that the GWI-based policy outperforms
the GPWI-based policy. The reason is that the non-identical
channel is jointly modeled by the NLoS and LoS components;
while the identical channel only considers the LoS component
in the simulation setting. In other words, the successful trans-
mission probability under the non-identical channel model
is lower than that in the identical channel model. More
importantly, Fig. 4 indicates that even though the coefficient
matrix £ is unknown prior, the GWI-based and GPWI-based
policies can still work efficiently by using the estimated A&.
In order to compare, we evaluate the proposed policies by
using realtime & in the following.

Fig. 5 shows the residual Aol degree of different IoT
devices v.s. time slot ¢ in network scenario I when N =
4 and K = 2 by running the GWI-based policy using the
estimated residual Aol degree & and the realtime residual
Aol degree &. We can see that the residual Aol degree v, (t)
of different IoT devices will trend to the stationary state (or
changes periodically) in Figs. 5a and 5b. This demonstrates
that E(a,(t)) = &,. Therefore, it is reasonable to replace
ay(t) with @, to decouple the CRMAB problem and to
discretize the continuous state space.
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TABLE I
INDEXES OF DIFFERENT SCHEDULING POLICIES ON IOT DEVICE n

Random
N
Nn /D i1 Wi

Greedy
An(t)

Max-Weight
PrAn(t)(An(t) +2)

GWI
Eq. (17)

GPWI
Eq. (28)

=

o

—>— Stationary random
| —8— Greedy policy
—0— Max-weight policy
—k— GWI-based policy
—o— Lower performance bound
6 K |—<— The optimal policy \
9 10 i 2
50 100 150 200 50 100 150 200
Time slot ¢ Time slot ¢

(a) Identical channel model (b) Non-identical channel model

—>— Stationary random
125] —&— Greedy policy

Average network-level Aol
Average network-level Aol

10 87> it policy
—A— GPWl-based policy
e —e— Lower performance bound

|—<—The optimal policy
0

Fig. 6. The average network-level Aol of different scheduling policies v.s.
time slot ¢ in network scenario I where N =4 and K = 2.

Next, we compare different scheduling policies, such as
the optimal policy, lower performance bound, greedy policy,
stationary randomized policy, max-weight policy, GWI-based
policy, and GPWI-based policy in terms of the average
network-level Aol in network scenario I. The number of
available channels is K = 2. The optimal policy is obtained
by solving the MDP problem in (4) by using the value iter-
ation method. However, since the number of states increases
exponentially with time slot ¢ and the number of IoT devices
N, we can only compute the case of the time slot ¢ <
10 and the number of IoT devices N < 4. In addition,
the lower performance bound is obtained by running
the Algorithm 3.

Other scheduling policies are summarized in Table 1. The
greedy policy schedules the IoT devices with K highest values
of Aol A, (t) at each time slot ¢. The stationary randomized
policy activates K IoT devices at each time slot ¢ with the
highest probabilities of 7,,/ Zi\il n;, where 7, is a constant
value associated with IoT device n. The max-weight policy is
adopted according to [16], which is a function of Aol A,,(t)
and the transmission successful probability p,,. Specifically,
it schedules the K IoT devices at each time slot ¢ with the
highest values of p,, A, (t) (A (t)+2). For the GWI-based and
GPWI-based policies, we run Algorithms 1 and 2 to compute
the average network-level Aol, respectively.

Fig. 6 depicts the performance of the above scheduling poli-
cies in network scenario I under the identical and non-identical
channel model where N = 4 and K = 2. It can be seen
that all scheduling policies can converge when the time slot ¢
approaches 7" = 200 under both channel models. However, the
performance of the proposed policies outperforms the existing
scheduling policies, i.e., the greedy policy, the stationary
randomized policy, the max-weight policy. Furthermore, the
performance of the proposed policies are close to the lower
performance bounds and the optimal solution. These results
demonstrate that the GWI-based and GPWI-based policies
not only consider the sources’ own Aol and the successful
transmission probability, but also take other IoT devices’
actions into account (i.e., the parameter &).
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Fig. 7. The performance of different scheduling policies v.s. the number of
available channels in network scenario II where 7" = 500 and N = 30.
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Fig. 8. The performance of different scheduling policies v.s. the IoT device’s
density A under the random network scenario where 7' = 500 and K = 2.

Under network scenario II, Fig. 7 presents the average
network-level Aol of the above scheduling policies when
the number of the available channels K is changed from
2 to 14, where the total time slot is 7' = 500 and the
number of IoT devices is N = 30. It can be seen that
the performance of all scheduling policies decreases with the
number of available channels K under both channel models.
Furthermore, the proposed policies have the best performance
among the existing scheduling policies and very close to the
lower performance bound under both two channel models.
However, the performance gain is not significant when the
number of available channels is over 8. Thus, there is a tradeoff
between the performance gain and the cost of increasing the
number of available channels.

In the following, we evaluate the GWI- and GPWI-based
policies by considering different IoT device’s density A in
random network scenario under both channel models. For the
random network scenario, at each MC trial, the transmission
successful probability p and the correlation matrix £ are
generated randomly as the same process of the generation of
the network scenarios I or II. We also consider two possible
network cases, i.e., the Aol with correlation case (0 < & < 1)
and the Aol without correlation case (& = 1).

Fig. 8 compares the performance of different scheduling
policies under the Aol with correlation case when IoT device’s
density A changes from 0.01 to 0.08 under the random network
scenario, where the total time slot is 7" = 500 and the number
of available channels is K = 2. We can see that the proposed
policies have the best performance among the existing schedul-
ing policies and are close to the lower performance bound
under both channel models. The performance gaps between
the proposed policies and other policies increase with the
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Fig. 9. The performance of the GWI-based and GPWI-based policies v.s.

the IoT device’s density A under the random network scenario in the cases
of Aol with and without correlation where 7" = 500.

IoT device density A. In addition, the performance of the
greedy policy accounts for the worst performance among all
scheduling policies.

Fig. 9 shows the performance of the GWI-based and
GPWI-based policies versus the IoT device’s density A under
the Aol with correlation case and the Aol without correlation
case in the random network scenario where the total time slot
T = 500. The number of available channels is set to K =
2 and K = 3. It can be seen that, under both channel models,
the average network-level Aol of the correlation case is much
lower than that of the non-correlation case when K = 2 and
K = 3. Moreover, the performance gap between these two
cases increases with the IoT device density A for K = 2 and
K = 3. Fig. 9 demonstrates that the proposed policies can
reduce the average network-level Aol significantly in the Aol
correlation case under both channel models, which benefit the
Aol-based scheduling problem in high-density networks.

VIII. CONCLUSION AND DISCUSSION

This paper studied the Aol-based minimization problem
in IoT networks with the settings of identical and non-
identical multi-channel, as well as correlated sources. We first
formulated this problem as an MDP, but its solution suffers
from high computational complexity and a lack of insights.
Then, we modeled this problem as a CRMAB problem,
which is computationally efficient and intuitively interpretable.
We derived the closed-form expressions of the GWI and
GPWI under the identical and non-identical channel models,
respectively. As a result, the GWI-based and GPWI-based
scheduling policies are constructed to solve this decoupled
CRMAB problem. Moreover, we provided two lower numer-
ical performance bounds for the proposed policies by solving
the relaxed Lagrange problem. Numerical results validated the
efficiency of the proposed scheduling policy and demonstrated
that they outperform the state-of-the-art scheduling policies.
More importantly, the adopted PCI model and the proposed
policies can benefit the Aol-based scheduling problem in high-
density networks.

In the CRMAB problem formulation, we have introduced a
pending state for each arm, removing the dependency among
sources to some extent. Then, an interesting problem is to find
the optimal solution to the original problem (2) by solving
the continuous-state space MDP problem in (4). This is an
important yet challenging problem for future study.
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APPENDIX A
PROOF OF PROPOSITION 1

We rewrite the Bellman equation of (11) as
Vin(d) =da+1—J 4+ V,(da+1)

—m
+ mi ’ 39
n { —pdae — pVip (do + 1), ©%

where the upper part of (39) is associated with the action of
u = 0 and the bottom part is with v = 1. Let D be the
threshold of the scheduling policy. Then, an arm is scheduled
when d > D and passive when 1 < d < D.

Case I (We First Consider the Case of 0 < a < 1): For
d > D, we have —pda — pV,,,(da+ 1) < —m, i.e.,

m — pda

Vin(dar +1) > 5 (40)
Meanwhile, the value function of V,,,(d) is given by
Vin(d)=(1—=p)Vin(da+1)+(1—p)da+1-J".  (41)

Then, we have the following recurrence relationships:

Vin(d) = (1 = p)Vin(da +1) + (1 — p)da + 1 — J*,
(1 —=p)Vim(da+1) = (1 — p)?Vu(da® + & + 1)
+(1-pda+1)+(1-p1-J,

(1=p)" Vin(da™ +.. . +1)=(1—p)" "V, (da" T +.. . +1)
+(1=p)" i da" ... +a+1)
+(1=p)"(1=J").

By summing over the above equations, we obtain

Vin(d) = (1 =p)" ™'V (da™ ' + ...+ 1)
+(1=p)da+...+(1—p)"da" + ... +a)
+1-JY0+0-p)+...+1=-p)").

Thus, when n — 400, we have (1 —p)"*! — 0 and

a(l—p)(dp+1—p) 1-J*
p(1—(1-pa) '

Since 1 < d < D, we have —pda — pV,,(da + 1) > —m,
ie.,

Vi(da +1) < m—Tpdoj 43)
Meanwhile, the differential value function of V,,,(d) is
Vin(d) = Vip(da + 1)—m + da + 1 — J*. (44)
Substituting d = (D — 1) /& into (44) yields
V(D) = Vi <§ - é) D+ (S m). @5)
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Similarly, we have the following recurrence relationships:

D 1
Vin(D) =V, ———> —D + (J* +m),
"
D 1 D 1 1
o(2-3)(3-3-3)
a o« a a a
D 1
— (T_T>+(J*+m)7
a  «
D 1 1 D 1
‘/;n,(an _5_ _5 :‘/771, W_W
1 D 1 1 y
_..._a>_<ﬁ_ﬁ_..~_a>+(c] +m).

By summing over the above equations, we obtain

D 1—antt
va’ o O‘/n+1 _ 64"+2

O‘/n+1
. anJrl_]_
a”—1
. 46
+o7n(1—d)2’ (46)

where V,,,(D) is given in (42) and 1 <n < D.

We have obtained the differential value functions as shown
in (42) and (46) which are the function of threshold D,
the optimal average reward .J*, and the subsidy for passive
m. To find these variables, it is sufficient to investigate the
conditions of V;,,(1) = 0 and V,,,(D + J*) = (m — pDa)/p.
The latter condition comes from the fact that there is an
optimal state (D + J*), where J* € [0,1), such that the
inequalities of (40) and (43) hold. Thus, we obtain

m — pDa

V,u(D) < < Vi(Da +1). (47)

So there exists a J* € [0,1) such that V,,(D + J*) = (m —
pD&)/p. According to the above two conditions, we have

a(l—p)(1—p+(D+Jp))

=J"+m—pDa—1,

1-(1-pa
-m+Dpa  (1—-paJ* _, 1
= —J =
P —G-pa _ "G=3 m)
artt —1 a” -1
dﬁ—i—l _&ﬁD+ @ﬁ 1— )2’
(48)

1—a"tt
— Gnfil_gntz — 1. The

where n is obtained by solving &,ﬂl
solution of n is given by

i =logs (1 — D(1 — &) — 2, (49)
where log, (+) is the logarithmic function with base a.
By combining (48), we obtain
= 1 _ _ _ * _ * * _ 1
p-dl=plp-—m=Jp-J)+ ([ tm-1) 4
pa2—p—(1-pa)
Note that since
oD 1-(1-p?a
= — — >0, (51
oJ*  pa2—p—(1-p)a)

D(J*) is monotonically increasing in the range [0, 1). Hence,
the optimal value can be achieved only in the end of the

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on December 30,2022 at 03:05:27 UTC from IEEE Xplore. Restrictions apply.



9788

interval, i.e., the expression D is obtained by letting J* = 0,

which gives

L, al=p)p—m)+(m—1)
pa2—p—(1-pa)

In addition, according to (48) and (52), we can obtain the

optimal average reward

(52)

. 1+Z+pmn p(n+p+pa— Da)
J* = — - —, (53)
pn+1 (I+pn)(1—a)
where
7 a(l—p)(DP+1-p) (54)

1-(1-pa
Finally, we show that the solution of (52) is a threshold
policy such that the following condition must be satisfied,

D 1—att m — pDa ,
‘/m, <a1+" - dl-&-n* —042+n> S P < Vm(d )7

(55)
where d’ € [D,+o0) and n~ € {0,1,2,...}. Next, we show
that the above condition holds. According to (42) and (476),
it is easy to see that V,,(d') and V,, (Dd"_ + 187

1—&

are monotonically increasing with d’ and n—, respectively.
Therefore, the solution of (52) is a threshold policy that an
arm is scheduled when d > D and passive when 1 <d < D.

Case Il (We Next Investigate the Case of & = 1): The main
idea is the same as that in the case of 0 < & < 1. The only
difference lies in the geometric sequence summation operation
of the recurrence relationships in (41) and (45). Hence, for the
case of a = 1, the differential value functions V;;,(d) can be
recalculated by

_ p(1=J*)+pd(1-p)+(1-p)*
p2

Vi (D—n) = Vin (D) 41 (D—m—g) . 1<d<D.

(56)

Vm(d) b d2D7

Similarly, by exploiting the conditions of V,,(1) = 0 and
Vin(D + J*) = (m — pD)/p, we can compute the threshold
expression D and the optimal reward J*, respectively, i.e.,

D——<1—m+w),

p
2
e (1 — p2) — (m?+2)p* + 2mp.
2p(1 —p)
At last, we need to verify that the solution of (57) is a
threshold policy, which must satisfy the following condition,

(57)

m—pD

Vi (D+n~+1) < <Vin(D +n"+1),

(58)

where n~ € {-D + 1,...,—1} and n™ € {0,1,2,...}.
Next, we show that the above condition holds. According to
(56), it is easy to see that V,, (D +n~) and V,,, (D +n™)
are monotonically increasing with n~ and n™, respectively.
Therefore, the solution of (57) is a threshold that an arm is
scheduled when d > D and passive when 1 < d < D in the
case of @ = 1.
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APPENDIX B
PROOF OF PROPOSITION 2

Here, we just need to prove that the single-armed MDP
problem can be decomposed into the multiple {0, 1}-actions
MDP problems since the threshold expression Dj is the
same as in Proposition 1 except that it considers different
channels. Then, each {0,1}-actions MDP problem can be
solved efficiently as that in Proposition 1.

The Bellman equation of the single-armed MDP problem
under non-identical channel can be rewritten as

Vin(d) + T = Vin(d, u),

min

59
uwe{0,1,...,K} ( )

where m is the subsidy for passive when the player takes
action v = 0. Since the K different channels are independent,
the above equation can be transferred to

min [Vi,, (d;u =0),Vp,, (d
min [Vi,, (d;u = 0), Vp,, (d

=1)
=2)]

‘U
‘U
Vi (d) + J*=min

min [V, (d;u=0), Vi, (d;u=K)],

where 7 = {mi, ma,..., mg} is the subsidy vector for the
K distinct channels and v € {1,...,K}. Let m_; be a
subsidies vector of all channels except for channel k£ and let
m' = [mj,,m_y] be the new subsidy vector. We now fix all
the subsidies in 7_y, but change the value of mj,. Then, the
above equation is transferred to

Vi (d)+J*=min [V,,, (d;u=0),V,,, (d;u=1)]
_ Vi (d)+J* =min [V, (d;u=0), Vi, (d;u=2)]
min .

Vi (d)+J*=min [V, . (d;u=0),V, (d;u=K)].

As a result, Eq. (59) can be decomposed into K sub-problems
of {0, 1}-actions MDP. Therefore, it is not difficult to obtain
the threshold expression of Dy, by solving the {0, 1}-actions
MDP problem as that in Proposition 1. Finally, the proof is
concluded by adopting the threshold expression of (14) and
the optimal average reward expression of (15) in Proposition 1
for channel k.

APPENDIX C
PROOF OF THE CONCAVITY OF J* IN (15)

We first prove the concavity of J* under the case of 0 <
& < 1. It can be seen from (15) that the optimal average
reward J* is an affine function of the subsidy m. Thus, we can
obtain that J*(m) is a concave function since its second-order
derivative is equal to 0. For the case of & = 1, we derive the
second-order derivative of J*(m) which is given by

0*J*(m) _ _—p
om2  1—p
Since 0 < p < 1, we have §%J*(m)/dm? < 0. Hence, J*(m)
is a strictly concave function in the case of & = 1. Finally,

we conclude that J*(m) is a concave function of m in (15)
when 0 < & < 1.

(60)
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