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Abstract—This paper considers a resource allocation problem
where several Internet-of-Things (IoT) devices send data to a
base station (BS) with or without the help of the reconfigurable
intelligent surface (RIS) assisted cellular network. The objective
is to maximize the sum rate of all IoT devices by finding the
optimal RIS and spreading factor (SF) for each device. Since
these IoT devices lack prior information of the RISs or the
channel state information (CSI), a distributed resource allocation
framework with low complexity and learning features is required
to achieve this goal. Therefore, we model this problem as a two-
stage multi-player multi-armed bandit (MPMAB) framework to
learn the optimal RIS and SF sequentially. Then, we put forth
an exploration and exploitation boosting (E2Boost) algorithm
to solve this two-stage MPMAB problem by combining the
ϵ-greedy algorithm, Thompson sampling (TS) algorithm, and
non-cooperation game method. We derive an upper regret
bound for the proposed algorithm, i.e., O(log1+δ2 T ), increasing
logarithmically with the time horizon T . Numerical results show
that the E2Boost algorithm has the best performance among
the existing methods and exhibits a fast convergence rate. More
importantly, the proposed algorithm is not sensitive to the
number of combinations of the RISs and SFs thanks to the two-
stage allocation mechanism, which can benefit the high-density
networks.

Index Terms—Reconfigurable intelligent surface (RIS),
Internet-of-Things (IoT), multi-player multi-armed bandit
(MPMAB), Thompson sampling (TS), exploration and exploita-
tion boosting (E2Boost) algorithm.

I. INTRODUCTION

Reconfigurable intelligent surface (RIS), which enhances
the communication quality by adjusting the amplitude and the
phase shift of the incident signal on a 2D planar surface with
massive low-cost passive reflecting elements, has drawn in-
creasing attention in future communication networks [1]–[3].
There have existed some works accounting for this vision by
studying the performance of the RIS-assisted cellular network
[4], [5], RIS-assisted unmanned aerial vehicle network [6],
and RIS-assisted secure wireless communications [7].
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Meanwhile, the cellular Internet-of-Things (C-IoT) with
RIS is regarded as one of the paradigms in future communi-
cation networks, providing the capabilities of low-cost, large-
scale, and ultra-durable connectivity for everything [8]–[10].
By employing the LoRa (short for Long Range) technology,
C-IoT can operate on the unlicensed band since the resulting
signal has substantial anti-interference properties [11]. On
the other hand, C-IoT can achieve the rate adaptation by
employing the chirp spreading spectrum modulation at the
physical layer with different spreading factors (SFs) [12].
However, the study of the network-level performance of these
C-IoT devices in the RIS-assisted hybrid cellular network still
needs more research.

In light of this, we consider a hybrid uplink network where
several C-IoT devices transmit data to a base station (BS) by
opportunistically accessing the RIS-assisted cellular network.
The goal is to maximize the sum rate of all C-IoT devices by
finding the best RIS and SF for each device. Although these C-
IoT devices can directly send data to the BS, a higher SF that
corresponds to a lower data rate will be assigned to combat
the harsh channel environment or to enable a long-range
transmission [13]. As pointed out in [9], the low data rate will
result in high data latency and security problems. Therefore,
these C-IoT devices may opportunistically access the vacant
RISs to improve their data rate by reflecting their signal to
the BS. However, finding the optimal RIS and collecting the
exact channel state information (CSI) are challenging for these
C-IoT devices. On the one hand, the C-IoT device has no
information (e.g., the phase shifts) about the RISs since they
are deployed for cellular users (UEs). On the other hand, there
is no communication among C-IoT devices in such distributed
network. These features render most traditional optimization
methods infeasible in this resource allocation problem, such as
the convex optimization methods [14] and the combinatorial
optimization methods [15].

To overcome the above impediments, the learning theory
has been considered in [8], [11], [16]–[18] to address this
problem by sequentially exploring all actions and automat-
ically exploiting the best action. Refs. [16], [17] study the
distributed resource allocation problem in wireless networks
by formulating ir as a Markov decision processing (MDP)
problem. Then, the authors propose the multi-agent reinforce-
ment learning (RL) based method to solve this MDP problem.
Unfortunately, these solutions often suffer from the issues of
the curse of dimensionality, lack of performance guarantee
(e.g., the unknown convergence rate), and high computational
complexity [18]. As pointed out in [8], [11], low complexity
and fast convergence resource allocation algorithms are crucial
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for the energy-constrained IoT devices in future communica-
tion networks.

This inspires us to consider the multi-armed bandit (MAB)
technique. MAB is a basic framework for the sequential
decision-making problem [19]. In the classic MAB setting,
at each time round, a decision-maker (or player) must select
an arm from a set of arms (or arm space) with unknown
distribution. After that, the player will observe a reward from
the environment (or the unknown distribution). The goal is
to minimize the pseudo-regret that is defined as the differ-
ence between the mean rewards of the optimal arm and the
currently selected arm. During this process, the player faces
an exploration and exploitation (EE) dilemma. On the one
hand, the player needs to explore the arm space sufficiently
to ensure its long-term performance (i.e., not miss the optimal
arm); on the other hand, it needs to exploit the current
best arm as many times as possible to maximize its total
rewards. Compared with the other learning-based methods,
MAB has a theoretical guarantee (i.e., regret bound) and low
computational complexity, and it is easy to implement.

Recently, the multi-player MAB (MPMAB) framework has
gained much attention in wireless communications [20]–[23].
Ref. [20] studies the SF allocation problem in the LoRa
network by devising a fully distributed MPMAB framework.
It solves this MPMAB problem by using the Exponential-
weight algorithm for Exploration and Exploitation (Exp3) [24]
algorithm. However, the solution of the Exp3 algorithm is
selfish in that it cannot guarantee the optimal allocation for
each device. The optimal MPMAB framework is considered
in [21], where different players contend for the same set
of channels in an ad-hoc network. Based on the Hungarian
algorithm [25], the authors propose a probably approximately
correct (PAC) based MPMAB algorithm to estimate the CSI
matrix sequentially. However, the PAC-based MPMAB al-
gorithm requires players to exchange messages, leading to
extra signaling in the system. The fully distributed resource
allocation framework with the optimal solution is investigated
in [22] and [23]. Ref. [22] aims to maximize the sum rate of
all users by combining the MAB algorithm and the auction
algorithm. A more general version of the distributed MPMAB
framework named the game-of-thrones (GoT) algorithm has
been proposed in [23]. The authors intend to find the optimal
assignment for each player by combining the MAB algorithm
and the game theory. However, algorithms in [22] and [23]
suffer from low convergence rate, especially when the arm
space is large.

In this paper, we propose a two-stage MPMAB framework
to attack this resource allocation problem in the hybrid uplink
network. In this two-stage MPMAB framework, players are
the IoT devices; arms are the RISs in the first stage and
the SFs in the second stage, respectively. We assume that
two or more players who select the same RIS will observe
a collision and receive zero reward. This resource allocation
problem is quite different from that in [21] and [22], because
it not only needs to learn the CSI but also the phase shifts
of the RISs. Moreover, the ascending order in the set of
SFs and the corresponding descending order in the successful
transmission probabilities enable us to devise a two-stage
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Fig. 1: A RIS-assisted hybrid uplink network.

MPMAB framework. To address this two-stage MPMAB
problem, we put forth an exploration and exploitation boosting
(E2Boost) algorithm by combining the game theory and the
MAB algorithm. The E2Boost algorithm proceeds in epochs
and has three phases, i.e., ϵ-greedy EE phase, non-cooperation
game phase, and Thompson sampling (TS) EE phase. Each
phase contains a specific mechanism to tradeoff the EE
dilemma. That is why we call it the E2Boost algorithm. In
addition, we derive an upper pseudo-regret bound for the
E2Boost algorithm, i.e., O(log1+δ

2 T ) where 0 ≤ δ < 1,
indicating that the per-round regret will trend to 0 when the
time horizon T is sufficiently large. More importantly, this
upper regret bound is about M times lower than that in the
GoT algorithm, where M is the number of SFs. In other
words, the proposed algorithm is not sensitive to the number
of combinations of the RISs and SFs, which can benefit high-
density networks.

The difference between this work and the existing ones and
the main contributions of this work are summarized as follows.

• The E2Boost algorithm embeds the ϵ-greedy algorithm
[26] in the first phase to reduce the regrets generated from
the uniform exploration. Specifically, we use the Wasser-
stein distance (WD) [27] to measure the convergence
rate of the second phase. In return, this measurement
is regarded as a criterion to optimize the parameter ϵ.

• The E2Boost algorithm adopts the TS algorithm [28],
[29] in the third phase to determine the best SF. Since
the only observed information is the success or failure
transmission feedback, the TS algorithm maintains a Beta
distribution on the successful transmission probability of
each SF. For the Bernoulli reward processing, the TS
algorithm accounts for the best performance among the
existing stochastic MAB algorithms [29].

• The E2Boost algorithm has a smaller arm space to
explore than the GoT algorithm. Thanks to the two-stage
allocation mechanism, the E2Boost algorithm only needs
to explore the sets of the RISs or the SFs. In contrast,
the GoT algorithm requires exploring the combinations
of the RISs and SFs.

The remainder of this paper is organized as follows. In
Section II, we introduce the channel model and the achievable
data rate. The problem formulation is given in Section III. In
Section IV, we introduce the two-stage MPMAB framework
for this joint resource assignment problem. The E2Boost
algorithm is presented in Section V. Numerical results are
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given in Section VI to evaluate the proposed algorithm. This
paper is concluded in Section VII.

II. SYSTEM MODEL

We consider a hybrid uplink cellular network, as shown in
Fig. 1, where several UEs and N IoT devices are located in an
area. Both UE and IoT device need to transmit data to the BS.
Since there may exist some obstacles (e.g., buildings) between
UEs and the BS, the signal will experience deep-fading. Thus,
K RISs are deployed to reflect the UEs’ signals to the BS by
adjusting the RISs’ phase shifts. These RISs are operated over
different frequencies1. The N IoT device has no information
about these RISs, but it may opportunistically access these
RISs to improve its data rate. In this hybrid network, UE
is the legal user to communicate with the BS through the
RIS; while the IoT device requires to perform spectrum
sensing2 before access to the vacant RIS. Time is slotted in
t = 1, 2, . . . , T . At each time slot, we assume that one RIS
can serve multiple UEs but can be exploited by only one IoT
device. The reason is that the BS requires the precoding and
beamforming vectors to maintain communication quality in
this multi-user RIS-assisted system [30]. These vectors often
contain the information of the CSI and the RISs’ phase shifts
determined by the UEs. As a result, a RIS can only support
one IoT device since the IoT device lacks these precoding and
beamforming vectors.

A. Channel Models

There are two transmission patterns for each IoT device in
this hybrid network. The first one is RIS-assisted transmission
pattern (Pattern I), where the IoT device transmits to the BS
through the RIS when the target RIS is detected in an idle
state. The second one is non-RIS-assisted transmission pattern
(Pattern II), where the IoT device directly transmits to the BS
with a low data rate if the target RIS is detected in a busy
state.

Pattern I: Assume that each element on the RIS is equipped
with b PIN diodes, producing 2b phase shifts in [0, 2π)
by controlling the ON/OFF state of each diode. Hence, the
available phase shift at the (l1, l2)-th element is

τl1,l2 =
πρl1,l2
2b−1

, (1)

where (l1, l2) is the index of the RIS elements’ matrix and
ρl1,l2 is an integer in [0, 2b − 1]. Let Al1,l2 be the reflection
factor at the l1-th row and l2-th column of the RIS elements’
matrix, which is defined as

Al1,l2 = Ae−jτl1,l2 , (2)

where A is a reflection amplitude with a constant value among
(0, 1]3.

By taking advantage of the directional reflections of the
RIS, the BS - RIS - IoT device link is usually stronger

1The RIS can operate at different frequencies by changing the location and
the wave-number of each element [5].

2If the received signal strength (RSS) exceeds a threshold, the IoT device
marks this RIS with the busy state; otherwise, the state of the RIS is idle.

3The reflection amplitude can be a function of the phase shift as in [31].

than other multi-path as well as the deep-fading direct link
between the BS and the IoT device [7]. Therefore, we model
the channel between the BS and the IoT device as a Ricean
model. In this way, the BS - (RIS k) - (IoT device n) link acts
as the dominant “LoS” component; while all the other paths
together form the “non-LoS (NLoS)” component. Hence, the
RIS-assisted channel model hn,kl1,l2

is defined as

hn,kl1,l2
=

√
ζ

ζ + 1
h̃n,kl1,l2

+

√
1

ζ + 1
ĥn,kl1,l2

, (3)

where h̃n,kl1,l2
and ĥn,kl1,l2

are the LoS component and the NLoS
component with the k-th RIS and the n-th IoT device through
the (l1, l2)-th element, respectively. Symbol ζ is the Rician
factor, indicating the ratio of the LoS component to the NLoS
component. In the following, we omit the IoT device index n
and the RIS index k in the superscript if no confusion occurs.

Let Dl1,l2 be the distance between the BS and the (l1, l2)-
th RIS element, and let dl1,l2 be the distance between the
(l1, l2)-th RIS element and the IoT device. The transmission
distance of BS - ((l1, l2)-th RIS element) - (IoT device n)
link is Ll1,l2 = Dl1,l2 + dl1,l2 . According to [4], the LoS
component of this link is given by

h̃l1,l2 =
√
GD−ι

l1,l2
d−ιl1,l2e

−j 2π
λ
Ll1,l2

=
√
G

[√
D−ι
l1,l2

e−j
2π
λ
Dl1,l2

] [√
d−ιl1,l2e

−j 2π
λ
dl1,l2

]
,

(4)

where ι is the path-loss exponent. Symbol G is the antenna
gain and λ is the wave length of the signal. Meanwhile, the
NLoS component is given by

ĥl1,l2 =
√
PLNLoS(Ll1,l2)gl1,l2 , (5)

where gl1,l2 is the small-scale NLoS component, following the
i.i.d. complex Gaussian distribution, i.e., gl1,l2 ∼ CN (0, 1).
Term PLNLoS(·) is the NLoS channel power gain that we
adopt the urban macro (UMa) path-loss model4 [32] in the
simulation.

Pattern II: In non-RIS-assisted transmission pattern, the
IoT device directly transmits to the BS without the help
of the RIS. Since there are some obstacles, the signal may
experience deep fading. Thus, we use the shadow fading
model to describe the channel between IoT device n and the
BS [33], i.e.,

hn =
√
ϱngn, (6)

where ϱn is the channel power gain, following the i.i.d. log-
normal distribution with mean µn and standard deviation σn
of ln (ϱn). The typical value of σn is between 6 and 12 dB
for practical radio channels [32]. In addition, gn is a small-
scale NLoS component, following i.i.d. complex Gaussian
distribution, i.e., gn ∼ CN (0, 1).

4The calculation of PLNLoS(·) in dB form is 10 log10 PLNLoS(d) =
13.54 + 39.08 log10(d) + 20 log10(fc)− 0.6(hIoT − 1.5), where d is the
Euclidean distance between the device and the BS, and h is the height of the
device. Symbol fc is the central frequency.
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B. Signal Model and Achievable Data Rate

The received signal from IoT device n to the BS through
RIS k is given by{

𭟋n,k =
∑

l1,l2
Ak

l1,l2
hn,kl1,l2

√
Ωnx+ y + ω, Pattern I,

𭟋n = hn
√
Ωnx+ y + ω, Pattern II,

(7)
where x is the transmission signal with |x|2 = 1 and y is the
received interference signal5 which can be modeled as a log-
normal distribution [34], i.e., y ∼ LogN (µy, σ

2
y). In addition,

ω ∼ CN (0, σ2
ω) is the i.i.d. additive complex Gaussian noise

and Ωn is the transmit power. Then, the received signal-to-
interference-plus-noise ratio (SINR) can be calculated by γn,k =

Ωn

(∑
l1,l2

Ak
l1,l2

h̃
n,k
l1,l2

∑
l1,l2

(
Ak

l1,l2

)∗(
h̃
n,k
l1,l2

)∗)
exp(2µy+2σ2

y)+σ2
ω

,

γn =
Ωnhnh

∗
n

exp(2µy+2σ2
y)+σ2

ω

,

(8)
where (·)∗ is the conjugate operation.

In a practical system, each IoT device can only support
a finite number of data rates according to the available SFs.
Let M = {c1, c2, · · · , cM} and S = {s1, s2, · · · , sM} be the
set of data rates and SFs, respectively. According to [12], the
relationship between data rate and SF is given by

cm =
Bsm
2sm

× CR, (9)

where B is the bandwidth in Hz and CR is the code rate. It can
be seen that a higher SF is associated with a lower data rate. In
other words, if S is in ascending order s1 < s2 < · · · < sM ,
M will be the descending order c1 > c2 > · · · > cM .

The achievable data rate not only corresponds to the se-
lected modulation and coding scheme but also depends on
the received SINR [35]. Thus, according to the instantaneous
received SINR, the successful transmission probability of data
rate cm is given by{

θnk,cm ≜ Pr{γ′n,k ≥ Ψm}, Pattern I,

θncm ≜ Pr{γ′n ≥ Ψm}, Pattern II,
(10)

where Ψm is the minimum required SINR for the BS to
demodulate the received signal when the data rate is cm.
Note that SINR γ′n,k (or γ′n) is a random variable with mean
γn,k (or γn) due to the small-scale NLoS components and
the received interference signal. According to the Shannon
formula, the better received SINR, the higher successful
transmission probability when given a data rate. In other
words, a descending data rates (c1 > c2 > · · · > cM )
will lead to an ascending successful transmission probabilities
(θc1 < θc2 < · · · < θcM ).

III. PROBLEM FORMULATION

The system’s goal is to maximize the sum rate of all IoT
devices at each time slot by finding the optimal RIS and
SF for each device under Pattern I, as well as determining
the optimal SF for each device under Pattern II. Let ϑ⃗t =

5Notice that the interference y may come from the neighboring cellular
networks or the local UEs when the UEs’ signals are missed detection by the
IoT devices.

{ϑt1, ϑt2, . . . , ϑtK} be the state vector of the RISs at time slot
t, where ϑtk = 1 means that the k-th RIS is vacant; otherwise,
it is occupied. Note that this information is known prior to
each IoT device with the spectrum sensing operation. Then,
the resource allocation problem is given by

max
ϕn
k,cm

,ψn
cm

T∑
t=1

N∑
n=1

M∑
m=1


K∑
k=1

cmϑ
t
kθ
n
k,cmϕ

n
k,cm︸ ︷︷ ︸

Pattern I

+ cmθ
n
cmψ

n
cm︸ ︷︷ ︸

Pattern II


s.t.

M∑
m=1

K∑
k=1

ϑtkϕ
n
k,cm +

M∑
m=1

ψncm = 1, ∀n ∈ N ,

N∑
n=1

ϕnk,cm ≤ 1, ∀cm ∈ M, and ∀k ∈ K,

(11)
where ϕnk,cm and ψn

cm are the binary variables, where ϕnk,cm =
1 denotes that IoT device n transmits on the k-th RIS with SF
sm to reflect its signal to the BS; otherwise, ϕnk,cm = 0. The
symbol ψn

cm = 1 denotes that IoT device n directly transmits
to the BS with SF sm; otherwise, ψn

cm = 0. Thus, the first
constraint indicates that each IoT device either transmits on
Pattern I or Pattern II. If IoT device n transmits on Pattern I,
then

∑M
m=1

∑K
k=1 ϑ

t
kϕ

n
k,cm

= 1 means that each IoT device
can only select a pair of RIS and SF; if IoT device n transmits
on Pattern II, then

∑M
m=1 ψ

n
cm = 1 denotes that each IoT

device can only select a SF. The second constraint means that
the number of IoT devices that select the k-RIS and the m-
th SF is subject to 0 or 1. In addition, N = {1, 2, · · · , N}
and K = {1, 2, · · · ,K} are the sets of IoT devices and RISs,
respectively. The symbol θnk,cm is the successful transmission
probability that IoT device n transmits on the k-th RIS and the
m-th SF; while θncm is the successful transmission probability
that IoT device n directly sends data to the BS with SF m.

It is difficult to solve problem (11) in this distributed hybrid
network, especially in Pattern I. First, cm and θnk,cm are
discrete values6, resulting in a non-convex problem. Second, it
requires the exact value of θnk,cm . This information is difficult
to obtain since the channel characteristic is determined by
the UE-controlled RISs. Third, it needs some communications
among IoT devices to share the information of θnk,cm so as to
determine the optimal available RIS for each IoT device. In
addition, problem (11) in Pattern II can be regarded as a rate
adaptation problem [36] since the SF allocation is independent
for each IoT device, but it still requires the exact CSI (or the
value of θncm ), which is hard to estimate from the time-varying
channel.

To overcome these challenges, we adopt the online learning
method to learn the values of θncm and θnk,cm sequentially
and to allocate the optimal RIS and SF to each IoT device
adaptively. During this process, the IoT device not only needs
to explore the combinations of the RISs and SFs sufficiently
but also needs to exploit the current best RIS and SF as many
times as possible at each time slot. To better tradeoff this EE

6According to (9), cm is discrete since the number of SFs is limited in
practice. In addition, according to (8) and (10), θnk,cm is a function of the
RIS’s phase shifts, which are discrete values in range [0, 2π).
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dilemma, we introduce the MPMAB framework to solve this
problem, where players are the IoT devices, and arms are the
combinations of the RISs and SFs.

However, the MPMAB framework still suffers from a
slow convergence rate due to the large arm space (i.e., the
combinations of the RISs and SFs) under Pattern I. Therefore,
we decouple the MPMAB problem into a two-stage MPMAB
framework to shrink the feasible arm space. The reason is
that, on the one hand, a descending data rates will result in an
ascending successful transmission probabilities; on the other
hand, an IoT device with different data rates will experience
the same channel-fading under a particular RIS. These features
indicate that the average successful transmission probabilities
of the ordered data rates over different RISs have the same
trend. Therefore, we can explore these RISs by arbitrarily
assigning a data rate to the IoT device. In other words, the SF
allocation and the RIS allocation processes are independent
of each other under Pattern I.

IV. TWO-STAGE MPMAB-BASED RESOURCE
ALLOCATION FRAMEWORK

In this two-stage MPMAB framework, players are the IoT
devices; arms are the RISs and the SFs in the first and second
stages, respectively. The first-stage MPMAB problem is to
determine the best RIS for each IoT device; while the second-
stage MPMAB problem is to find the optimal SF based on the
state of the determined RIS.

A. First-Stage MPMAB Framework

We first introduce the transmission feedback model and the
collision model. In the transmission feedback model, the IoT
device can receive the transmission feedback from the BS
when it transmits on Pattern I or Pattern II. Specifically, let
I ′n,t be the selected arm by the n-th IoT device at time slot
t. After transmitting on the I ′n,t-th arm, the IoT device n
will receive a transmission feedback XI′

n,t
(t) from the BS. If

the transmission is successful, then XI′
n,t

(t) = 1; otherwise,
XI′

n,t
(t) = 0.

The collision model only exists in the first stage, referring
to that two or more IoT devices that choose the same RIS
will receive no rewards. We assume that each IoT device can
deduce this collision information by observing the timeout
feedback flag. Specifically, let η be the collision indicator. If
an IoT device does not receive any feedback from the BS in
the current time slot, then a collision happens, i.e., η = 0;
otherwise, η = 1. Therefore, IoT device can distinguish the
collision and the transmission failure events by checking it
whether or not receives transmission feedback from the BS.
Moreover, this collision model also works in some extreme
situations. For example, when the received SINR in Pattern
I is too low to be recognized by the BS, the IoT device can
always set η = 0 (i.e., the reward is 0) since the target RIS is
suboptimal to it.

Denote I ′
t = {I ′1,t, I

′

2,t · · · , I ′N,t} by the strategy profile at
time slot t. The collision indicator of RIS k is defined as

ηk
(
I ′
t

)
=

{
0, |Nk| > 1,

1, otherwise,
(12)

where Nk is the set of players that select the k-th RIS in
strategy profile I ′

t. The reward that IoT device n transmits on
the k-th RIS is given by

rn,I′
n,t=k(t) ≜ ηk

(
I ′
t

)
XI′

n,t=k(t). (13)

Then, the estimated average successful transmission probabil-
ity that the n-th IoT device transmits on the k-th RIS is given
by

θ̂n,k = E
[
rn,I′

n,t=k(t)
]
, (14)

where E[·] is the expectation operator.

B. Second-Stage MPMAB Framework

In this stage, each player has a targeted RIS after the first-
stage allocation. Thus, the IoT device transmits directly or on
a targeted RIS to the BS at each time slot. Note that there
is no collision in this stage since two or more players can
choose the same SF. Therefore, this stage can be regarded as
a single-player MAB framework.

Let I ′′n,t be the currently selected arm at the second-stage
allocation. The reward that the IoT device n chooses the m-th
data rate is defined as

rn,I′′
n,t=m(t) ≜ cmηk

(
I ′
t

)
XI′′

n,t=m(t), (15)

where cm is the m-th data rate and I ′
t is the strategy profile

of all players’ target RISs at the first stage. The instantaneous
rewards rn,I′′

n,t
(t) are independently and identically distributed

w.r.t. player n and time slot t. Therefore, the estimated average
reward is given by

µ̂n,m = E
[
rn,I′′

n,t=m(t)
]
= cmθ̂n,m, (16)

where θ̂n,m is the estimated average successful transmission
probability that the n-th IoT device transmits on the m-th data
rate.

C. Performance Metric for the Two-Stage MPMAB Frame-
work

In the following, we design a criterion to quantify the
performance loss that players select the suboptimal arms rather
than the optimal arm in this two-stage MPMAB problem.
According to (11), the objective function consists of Pattern I
and Pattern II. For Pattern I, we define the joint RIS and SF
selection profile by a = {a1, a2, . . . , aN}, where an ∈ K⊗M
and ⊗ is the Cartesian product of the RIS set and the data rate
set. However, for Pattern II, the selection profile a is the set of
data rates, i.e., an ∈ M. Therefore, the two-stage allocation
aims to solve the following problem,

a∗ = argmax
a

N∑
n=1

µ̂n,an

= argmax
a

N∑
n=1

E [caηk (a)Xa(t)] ,

(17)

where a∗ = {a∗1, a∗2, · · · , a∗N} is the optimal strategy profile.
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Fig. 2: The structure of the E2Boost algorithm.

Then, we define the difference between the optimal arm
and the currently selected arm as the performance metric,
also known as regret. According to [23], the expression of
accumulated regrets is given by

Reg ≜
T∑

t=1

N∑
n=1

rn,a∗
n
(t)−

T∑
t=1

N∑
n=1

rn,an(t), (18)

where a∗n ∈ a∗ and T is the total time slots. For mathematical
analysis, we further define the pseudo-regret [19] w.r.t. the
stochastic rewards and the randomly selected arms as

Reg =

N∑
n=1

(
T × µn,a∗n − E

T∑
t=1

µn,an

)

=


∑N
n=1

∑K×M
i=1 ∆n,iE[Wn,i], Pattern I,∑N

n=1

∑M
i=1 ∆n,iE[Wn,i], Pattern II,

(19)

where ∆n,i = µn,a∗
n
− µn,i and Wn,i is the number of times

that arm i has been selected up to time T . Term µn,i is the
real expected throughput of player n at arm i.

V. E2BOOST ALGORITHM

In this section, we propose an E2Boost algorithm to solve
this two-stage MPMAB problem by combining the game
theory and the MAB algorithms. The structure of the E2Boost
algorithm is shown in Fig. 2. Since time horizon T is unknown
to each player, the E2Boost algorithm proceeds in epochs
(i.e., z = 1, · · · , Z). Each epoch consists of three phases: ϵ-
Greedy EE, non-cooperation game, and Thompson sampling
EE phases. Each phase contains several time slots and specific
mechanism to balance the EE dilemma.

A. The Exploration and Exploitation Boosting Algorithm

The E2Boost algorithm is shown in Algorithm 1. The first
two phases are designed to find the optimal RIS for each IoT
device by solving the first-stage MPMAB problem; while the
last phase is to determine the best SF by solving the second-
stage MPMAB problem. In the following, we elaborate on the
above three phases in detail.
ϵ-Greedy EE Phase: There are ν1zδ rounds in this phase

for epoch z = 1, · · · , Z, where ν1 > 0 and δ > 0 are
two constants. It aims to estimate the average successful
transmission probability of each RIS. The SF is randomly
chosen from the set S when z = 1; otherwise, it uses the SF
determined in the last epoch of the third phase. We adopt the
ϵ-greedy algorithm to balance the EE dilemma. Specifically, if
z = 1, we set ϵ = 1 to uniformly explore all RISs; otherwise,
we update the parameter ϵ according to Lemma 1, as given in

the next paragraph. Hence, when the players’ strategy profile
deviates from a∗, Algorithm 1 tends to uniformly explore all
actions; otherwise, it inherits the last epoch’s action with a
high probability.

Non-cooperation Game Phase: This phase has a length
of ν2zδ rounds, which is the core step of Algorithm 1 to
allocate the optimal RIS for each player. By adopting the
estimated average successful transmission probability θ̂zn,k in
the first phase as a utility, players in this phase will play a
non-cooperation game.

Specifically, let the utility of player n in strategy profile I ′

be
un(I

′) ≜ ηk(I
′)θ̂zn,k, ∀k ∈ K, (20)

where θ̂zn,k is the estimated successful transmission probability
that the n-th IoT device transmits on the k-th RIS from
epoch 1 to z at the first phase. Let un,max = max

I′
un(I

′) be
the maximum utility of player n. Assume that each player
has a private state STn = {C,D}, ∀n ∈ N , where C
and D represent content and discontent state, respectively.
In addition, each player maintains a baseline RIS k̄. Then,
a player chooses a RIS according to the following strategy:

• A content player has a very high probability to stay at
the current baseline RIS:

Pn,k =

{
εν

K−1 , k ̸= k̄;

1− εν , k = k̄.
(21)

• A discontent player selects a RIS following a uniform
distribution, i.e.,

Pn,k =
1

K
, ∀k ∈ K. (22)

The transition between content state C and discontent state D
is given by:

• If k = k̄, un > 0, and STn = C, then a content player
keeps state C with a probability of 1:

(k̄, C) → (k̄, C). (23)

• If k ̸= k̄ or un = 0 or STn = D, then transitions of
baselines and states are given by

(
k̄, C/D

)
=

{
(k,C) , un

un,max
εun,max−un ;

(k,D) , 1− un

un,max
εun,max−un .

(24)

Eq. (24) indicates that, when a RIS records a collision or in
a busy state (i.e., ηk = 0), the player will transfer to the
discontent state D with a probability of 1 as un = 0. On the
other hand, when a RIS is optimal to the player, it will transfer
to the content state C with a probability of 1 as un = un,max.

Assume that all players’ actions and states constitute a
strategy profile a1. Then, a strategy graph can be constructed
at the end of this phase, where the vertex is the strategy
profile, and an edge exists if the players can switch from
one strategy to the other. Actually, this strategy graph forms
a perturbed time-reversible Markov process over state space∏N

n=1 (Kn × (C,D)). As pointed out in [23], [37], [38], there
exists an optimal strategy profile that players will visit many
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Algorithm 1 E2Boost Algorithm Run by Player n

1: Initialization: δ > 0, ε > 0 and ν, ν1, ν2, ν3 > 0. Let ϵ = 1, Vn,k(0) = 0, Qn,k(0) = 0, αn,m(0) = 0, βn,m(0) = 0, ∀k ∈
K, ∀m ∈ M.

2: for each epoch z = 1, 2, · · · , Z do
3: i) ϵ-Greedy EE Phase: For the next ν1zδ time slots.
4: a) Pick up a data rate I ′n,t = m uniformly from set M if z = 1, otherwise I ′n,t = c∗n;
5: b) Select a RIS I ′n,t = k uniformly from set K with probability ϵ or I ′n,t = k∗n with probability 1− ϵ;
6: c) Detect the selected RIS: jump to Phase iii if busy; otherwise, continue the following steps:
7: d) Observe the transmission feedback Xn,I′

n,t
. Set ηk = 0 if timeout and ηk = 1 otherwise;

8: e) If ηk = 1 then update Vn,I′
n,t

(t) = Vn,I′
n,t

(t− 1) + 1 and Qn,I′
n,t

(t) = Qn,I′
n,t

(t− 1) +Xn,I′
n,t

(t);
9: At the end of this phase, compute the successful transmission probabilities of RISs by

θ̂zn,k =
Qn,k

Vn,k
, ∀k ∈ K.

10: ii) Non-cooperation Game Phase: For the next ν2zδ time slots, play with the dynamics. Set STn = C, and let k̄ be
the last RIS chosen in the z − ⌊ z

2⌋ − 1 Game phase, or a random choice if z = 1, 2.
11: a) If STn = C choose a RIS I ′n,t using (21) and if STn = D select I ′n,t at random (22);
12: b) Detect the selected RIS: jump to Phase iii if busy; otherwise continue the following steps:
13: c) If I ′n,t ̸= k̄ or un = 0 or STn = D then set STn = C or D according to (24);
14: d) Record the number of times each RIS has been selected within the content state using (25);
15: e) Adjust parameter ϵ according to Lemma 1 when z ≥ 2.
16: At the end of this phase, determine the current best RIS by

k∗n = argmax
k∈K

⌊ z
2 ⌋∑

j=0

F z−j
n (k).

17: iii) Thompson Sampling EE Phase: For the next ν32z time slots, run the Thompson sampling algorithm based on
the current state of the best RIS, as well as the corresponding collision indicator.

18: a) Draw θ̂n,m ∼ Beta (αn,m(t) + 1, βn,m(t) + 1);
19: b) Select a data rate I ′′n,t = argmaxm∈M cm × θ̂n,m;
20: c) Detect the target RIS: device directly transmits to the BS if busy, otherwise continue the following steps:
21: d) Transmit on the selected data rate and observe the random transmission feedback XI′′

n,t
(t);

22: e) Posterior update: Set αn,I′′
n,t

(t) = αn,I′′
n,t

(t− 1) +XI′′
n,t

(t) and βn,I′′
n,t

(t) = βn,I′′
n,t

(t− 1) + 1−XI′′
n,t

(t).
23: At the end of this phase, determine the current best data rate by

c∗n = arg max
m∈M

cmαn,m

αn,m + βn,m
.

24: end for

times than other strategy profiles. As a result, each player can
agree on its optimal arm by recording the number of times
that each arm has been selected, i.e.,

F z
n(k) ≜

∑
t∈Gz

I
(
I ′n,t = k, STn = C

)
, ∀k ∈ K, (25)

where F z
n(k) is the number of times that the k-th RIS has

been played by the n-th player at the z-th epoch under state
C. The symbol Gz represents the number of time slots in the
z-th epoch and I(·) is an indicator function. Finally, we can
determine the best RIS by using the recent ⌊z/2⌋+1 epochs’
F z
n , i.e.,

k∗n = argmax
k∈K

⌊ z
2 ⌋∑

j=0

F z−j
n (k). (26)

In addition, F z
n can be used to design a criterion to balance

the EE dilemma in the first phase by adjusting the parameter
ϵ. The reason is that it is unnecessary to uniformly explore

all RISs when the non-cooperation game phase asymptotically
approaches the optimal RIS. This asymptotical behavior can
be quantified by the distance between two adjacent vectors
of F z

n and F z−1
n , which can be measured by the WD7. As

a result, the distance between the probability mass functions
(PMFs)8 of F z

n and F z−1
n is regarded as a criterion to adjust

the parameter ϵ. Thus, we have the following lemma.
Lemma 1: For the n-th player, given z > 1, the parameter

of the ϵ-greedy algorithm in the first phase can be chosen
according to

ϵ ≜ min{1,DWD
(
P(F z

n) || P(F z−1
n )

)
},

where DWD (· || ·) is the calculation of the WD in [39]. Terms

7Wasserstein distance, also known as earth mover’s distance, is a measure
to calculate the distance between two probability distributions on a metric
space. In the simulation, we compute it using the corresponding function in
Matlab.

8The PMF is computed by P(F zn(i)) = F zn(i)/
∑
i F

z
n(i), ∀i ∈ K.



8

P(F z
n) and P(F z−1

n ) are the PMFs of (25) at epochs z and
z − 1 of the second phase, respectively.

Thompson Sampling EE Phase: The last phase has a
length of ν32

z rounds where ν3 > 0 is a constant. The
objective is to find the best SF for each player based on
the busy or idle state of the determined RIS in the second
phase. Note that there are two types of resource allocations
in this phase for transmission Pattern I and Pattern II. The
main difference between the two allocations is that, in Pattern
I, it requires to jointly estimate θnk,cm and θncm at each epoch;
while in Pattern II, it only needs to estimate the θncm at each
time slot.

As mentioned before, the second-stage MPMAB problem
can be regarded as a single-player MAB problem. Therefore,
we can adopt the TS algorithm [29] to solve the second-stage
MPMAB problem to track the Bernoulli distribution rewards
(i.e., transmission success or failure). The TS algorithm first
maintains a Beta prior distribution9 for each SF. Thus, the
objective of this phase is equivalent to estimating the param-
eter in the Beta distribution, which will converge to the true
value of θnk,cm or θncm . Based on the transmission feedback,
TS algorithm is able to update the posterior distribution by:
α = α+1 if transmission is successful, otherwise β = β+1.
Notice that the value function (i.e., cmθ̂n,m) is the current data
rate, instead of the successful or failed transmission feedback.
At the end of this phase, it can determine the current best SF
for each IoT device by using the estimated parameters in the
Beta distribution, i.e.,

c∗n = arg max
m∈M

cmαn,m

αn,m + βn,m
. (27)

B. Complexity and Feasibility Analysis

We first give a brief discussion on the computational
complexity of the proposed algorithm. In Algorithm 1, the
computational complexity of the first phase is O(ν1z

δLED),
where LED is the length of samples in the energy detector of
the spectrum sensing operation. Meanwhile, the computational
complexity of the second phase is O(ν2z

δ + zK log2K),
where the second term comes from the WD in the calculation
of parameter ϵ [27]. In addition, the computational complexity
of the third phase is O(ν32

zM log2M), where the complexity
comes from the ‘argument maximum’ operation in the TS
algorithm [29]. Therefore, the total computational complexity
is O(ν1z

δLED+ ν2z
δ + zK log2K+ ν32

zM log2M), which
increases linearly logarithmically with the number of RISs K
and SFs M . As the time epoch z increases, the complexity of
the third phase will become the dominant factor in the total
complexity. Therefore, the total complexity of Algorithm 1 is
about O(ν32

zM log2M).
Next, we discuss the feasibility of the proposed algorithm

in practical applications, e.g., B5G/6G networks. First, the
proposed algorithm performs in real-time and automatically
converges to the optimal solution (i.e., the online learning
feature). Second, its distributed feature can reduce the com-
munication overhead and make it easy to apply to the other

9Beta(α, β) is the beta distribution with probability density function (pdf):
fα,β(y) =

yα−1(1−y)β−1

B′(α,β) , y ∈ [0, 1], where B′(α, β) = Γ(α)Γ(β)
Γ(α+β)

.

network scenarios. Third, the complexity of the proposed
algorithm increases linearly logarithmically with the number
of RISs K and the SFs M . These features demonstrate that
the proposed algorithm has great potential to be applied in
B5G/6G networks with different requirements of the rate,
delay, scalability, and reliability.

In Algorithm 1, we only consider the case that the number
of IoT devices is less than the RISs, i.e., K ≥ N . However,
the proposed algorithm can also handle the case of K < N
by dividing N IoT devices into K clusters using the k-
means clustering method [40] according to their geographic
locations. We assume that the IoT devices in the same cluster
prefer the same RIS and communicate with the BS using
the round-robin method. Therefore, one of the clustering IoT
devices can transmit on the RIS; while others directly transmit
data to the BS at each time slot. In other words, Algorithm
1 still works in the case of K < N by allocating the optimal
RIS to each cluster rather than each IoT device.

Algorithm 2 Modified E2Boost Algorithm Run by Player n
for the case K < N

1: Initialize: Parameters in Algorithm 1
2: for each time slot t = 1, 2, · · · , T do
3: Check the round-robin flag
4: If the flag is equal to 1, run the E2Boost algorithm in

Algorithm 1
5: Otherwise, run the TS algorithm in the third phase of

Algorithm 1
6: end for

Therefore, we give a modified E2Boost algorithm to handle
the case of K < N , as shown in Algorithm 2. At the beginning
of each time slot, the IoT device n first checks its round-robin
flag to determine its transmission patterns: If the flag is equal
to 1, the IoT device runs the E2Boost algorithm in Algorithm
1 to find the optimal RIS and SF; otherwise, it runs the TS
algorithm in the third phase of Algorithm 1 to find the optimal
SF.

C. An Upper Pseudo-Regret Bound

We derive an upper pseudo-regret bound for the E2Boost al-
gorithm. Since each IoT device has two transmission patterns,
the pseudo-regret also consists of the RIS-enabled regret and
the non-RIS-enabled regret parts.

For the RIS-enabled regret part, the performance analysis
of the RIS-enabled regret is mainly built on [23] since the
E2Boost algorithm shares the same architecture of the GoT
algorithm. On the other hand, the Bernoulli reward processing
in this work strictly meets the key condition of Definition
1 in [23]. However, compared with the GoT algorithm, the
proposed algorithm has the following features. First, it is a
two-stage MPMAB framework that has a small arm space
(i.e., K) to explore. Its total pseudo-regret only depends on
the number of RISs, instead of the whole arm space (i.e.,
K ⊗ M) as that in the GoT algorithm. Second, we embed
the ϵ-greedy algorithm into the first phase to further tradeoff
the EE dilemma. Thus, the accumulated regrets of this phase
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will trend to 0 when all players agree on their optimal RISs.
Third, we incorporate the TS algorithm into the third phase
to determine the best SF. Similarly, only a few accumulated
regrets will be accrued in this phase when the optimal RIS is
determined. Therefore, these features enable us to achieve a
tighter pseudo-regret bound than the GoT algorithm.

For the non-RIS-assisted regret part, the E2Boost algorithm
only has the third phase, i.e., the second-stage MPMAB
problem. Since two or more players that select the same arm
(or SF) will not collide, this MPMAB problem is reviewed
as a single stochastic MAB problem. In Algorithm 1, we use
the modified TS (MTS) algorithm [36] to solve this single
stochastic MAB problem. Therefore, we adopt the theoretical
results in [36] to derive the non-RIS-enabled regret.

To conclude, we have the following theorem.

Theorem 1: Let Γmax = maxn,i µn,i be the maximum real
expected rewards among all players’ arms. For any hybrid
uplink network, given ν1 > 0, ν2 > 0, ν3 > 0, δ ≥ 0, 0 <
ϖ < 1 and a small enough ε, the total upper pseudo-regret
bound obtained by the E2Boost algorithm is

Reg ≤NΓmax(1− Pa)

(
2(ν1 + ν2) log

1+δ
2

(
T

ν3
+ 2

)
+(6NK + 1)ν3 log2

(
T

ν3
+ 2

))
+ Pa(1 +ϖ)

N∑
n=1

∑
an∈M

log2 T

DKL(an, a∗n)
∆n,an

,

(28)

where log1+δ
2 (T/ν3 + 2) denotes log2 (T/ν3 + 2) to the

power of (1 + δ) and DKL(·) is the Kukkback-Leibler di-
vergence. Term Pa is the active probability of the UE.

Proof 1: See Appendix A.

Remark 1: The first two terms of the upper pseudo-regret
bound accounts for the RIS-assisted regret part; while the third
term is the non-RIS-assisted regret part. We can see that the
weights of these two parts rely on the active probability of
the UE.

Remark 2: The total upper pseudo-regret bound increases
logarithmically with T , i.e., Reg = O(log1+δ

2 T ), indicating
that Algorithm 1 will converge and the per-round regret
approaches zero when T is sufficiently large.

Remark 3: The total upper pseudo-regret bound in the
E2Boost algorithm is much tighter than the GoT algorithm.
According to [23], the total upper pseudo-regret bound of the
GoT algorithm is

RegGoT ≤4NΓmax(ν1 + ν2) log
1+δ
2

(
T

ν3
+ 2

)
+NΓmax(6NKM + 1)ν3 log2

(
T

ν3
+ 2

)
= O(log1+δ

2 T ).

(29)

For example, when ν1 = ν2 = ν3, δ = 0, and Pa = 0, we
have

Reg ≤ (5 + 6NK) ν1NΓmax log2

(
T

ν3
+ 2

)
, (30)

TABLE I: The transmission parameters for the C-IoT device

Spreading Factor (SF) 7 8 9 10 11 12

Data Rate (Mbps) 1.09 0.63 0.35 0.20 0.11 0.06

Threshold (×103) 4.5 4 3.5 3 2.5 2

and

RegGoT ≤ (9 + 6NKM) ν1NΓmax log2

(
T

ν3
+ 2

)
. (31)

It can be seen that Reg is about M times lower than RegGoT.
This observation can be verified by the numerical results in
the following section.

VI. SIMULATION RESULTS

We conduct extensive simulations to evaluate the perfor-
mance of the proposed algorithms. The simulation parameters
are chosen according to the 3GPP standard [32] and refs. [4],
[5]. All results are obtained from 103 Monte Carlo (MC) trials.

A. Parameter Configuration and Baseline Algorithms

Parameter Configuration: The transmit power at each IoT
device is Ωn = 20 dBm, ∀n ∈ N . The background noise
plus interference power is −95 dBm, and the wavelength λ
is set according to the central carrier frequency 5.9 GHz.
The bandwidth B is 40 MHz. The Rician factor is ζ = 4,
and the antenna gain G is set to 1. Each IoT device has 6
SFs to choose from, as shown in TABLE I. The data rates
are determined by (9) and the thresholds are the minimum
required SINR to demodulate the received signal. Assume that
the active probability of each RIS (i.e., occupied by the legal
UEs) is P k

a = 0.2. In addition, we adopt the UMa model [32]
to describe the path loss of both LoS and NLoS components.

The RIS is placed perpendicular to the ground, and the
number of elements is 101 × 101. The direction of the RIS
in the XY -plane is shown in Fig. 3. The angle ∠φ and
all elements’ locations in RIS are determined according to
Appendix B. Each element contains b = 8 PIN diodes with the
refection amplitude A = 1. We consider two types of phase
shift settings, i.e., the optimal phase shift and the constant
phase shift. For the optimal phase shift setting, each RIS’s
phase shifts are set to be optimal to the UEs (see Proposition
2 of [4]), i.e.,

τl1,l2 =

⌊(
Π− 2π

λ
Lk
l1,l2

)
2b

2π

⌋
2π

2b
, (32)

where Π is an arbitrary constant and Lk
l1,l2

is the distance
between the BS, and the UEs through the k-th RIS’s (l1, l2)
element. For the constant phase shift setting, we assume that
the phase shifts on all RISs’ elements are equal. That is, all
integers ρl1,l2 in (1) are simply set to a constant (we set to
170 in the following simulations). Note that ρl1,l2 can be an
arbitrary integer in the range of [0, 2b − 1].

Baseline Algorithms: We compare the E2Boost algorithm
with the optimal solution, GoT algorithm, Q-learning method,
random selection method, E2Boost without TS algorithm, and
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Fig. 3: A schematic diagram of the UE-RIS-BS link (top
view).

E2Boost without WD algorithm. Next, we introduce these
baseline algorithms in detail.

• Optimal Solution: The optimal solution is obtained by
solving the two-stage MPMAB problem in a centralized
form. In the Pattern I, it allocates the optimal RIS and
SF to each IoT device by using the Hungarian algorithm
[15], where the only required information is θnk,cm and
θncm . In the simulation, we obtain this information by
recording the received SINR γn,k and γn with the above
simulation parameters over 105 MC trails. Then, θ̂nk,cm
and θ̂ncm can be estimated by comparing these SINRs
with a given threshold Ψm. Note that θ̂nk,cm and θ̂ncm can
approach the true values of θnk,cm and θncm arbitrarily as
long as the number of MC trials is sufficiently large.
Based on this information and the data rate cm in
Table I, the optimal RIS and SF of each IoT device
can be obtained by using the Hungarian algorithm (i.e.,
the munkres function in Matlab). In the Pattern II, we
determine the optimal SF for each IoT device using the
genie-aided solution (i.e., from God’s perspective) as the
θ̂ncm and cm are known.

• GoT Algorithm: The GoT algorithm in [23] is a fully
distributed algorithm to solve the decentralized resource
allocation problems. It has the same architecture of
the proposed algorithm. However, it lacks the ϵ-greedy
algorithm and the TS algorithm in the first and third
phases to further balance the EE dilemma. In addition,
it needs to explore the combinations of RISs and SFs;
while the proposed algorithm explores the RISs and SFs
separately.

• Q-learning method: For the Q-learning method, the state
is the target RIS’s busy or idle state. The state transition
probability is the RIS’s active or passive probability P k

a

or 1 − P k
a . The actions are the set of SFs M if the

target RIS is in a busy state; otherwise, the actions are
the combinations of SFs and RISs, i.e., K ⊗M.

• Random Selection: For the random selection method,
each IoT device uniformly chooses an arm from the arm
space K⊗M in Pattern I or the arm space M in Pattern
II at each time slot. There is no EE mechanism inside.

• E2Boost without TS: Compared with the E2Boost al-
gorithm, it removes the TS algorithm from the third
phase. Moreover, it requires exploring the combinations
of the RISs and SFs in the first phase with the ϵ-greedy
algorithm.
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Fig. 4: A fixed network scenario in a 200×200 m square area
with K = 3, N = 3 (top view).

• E2Boost without WD: Compared with the E2Boost algo-
rithm, the only difference is that it maintains a constant
exploration rate ϵ for the ϵ-greedy algorithm, rather than
adaptively adjusting ϵ in the E2Boost algorithm.

It is worth noting that there is a performance gap between
the solutions of the two-stage MPMAB problem and the
original problem (11). Specifically, the solution of problem
(11) is to allocate the optimal available RIS and SF to each
IoT device at each time slot t; while the solution (i.e., the
optimal solution) of the two-stage MPMAB problem is to
assign the optimal RIS and SF to each IoT device average
over the time horizon T . As a result, the performance of the
two-stage MPMAB problem is slightly poorer than that of
problem (11). However, Theorem 1 shows that the proposed
algorithm can converge to the optimal solution when T is
sufficiently large. The following simulation results will also
verify this.

B. Fixed Network Scenario

We first consider a fixed network scenario in a 200 m ×
200 m square area, as shown in Fig. 4, where N = 3 cellular
IoT devices are located in a 45 m × 45 m circle area. For
simplicity, we assume that all UEs are centered in the point
(x, y) = (150, 150) m. Outside this circle are the BS and
K = 3 RISs. The distances between the BS and the center of
the RIS, as well as the IoT device and the center of the RIS,
are calculated by the Euclidean distances w.r.t. their locations
(i.e., Dli,lj and dli,lj in Fig. 3), respectively. The RIS and the
BS heights are 10 m and 20 m, respectively.

Fig. 5 shows the allocation results of the E2Boost algorithm
for the optimal phase shift setting. The simulation parameters
for the E2Boost algorithm are ν = 1.4, δ = 0, ε = 0.01,
Z = 10, ν1 = ν2 = 1000 and ν3 = 100. The average
throughput is computed by 1

t

∑T
t=1 µn,In,t

. It can be seen
from Fig. 5 (b-d) that each player will converge to its own
optimal SF and RIS, i.e., player 1 → (RIS3, SF1), player
2 → (RIS1, SF1) and player 3 → (RIS2, SF1). All players
prefer SF1 with the highest data rate of 1.09 Mbps in Table
I. The average throughput of all players is 2.3859 Mbps,
which is slightly less than the optimal solution’s 2.4315 Mbps.
In addition, IoT device 3 accounts for the lowest average
throughput by 0.4971 Mbps due to the long transmission
distance between IoT 3-RIS2-BS links. The IoT device 3 does
not choose RIS3 because the direction (or the phase shifts) of
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Fig. 5: (a) Average throughput of three IoT devices, (b-d) The number of selected times at each arm for each player, by running
the E2Boost algorithm with optimal phase shift setting in the fixed network scenario Fig. 4.
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Fig. 6: (a) Average throughput of three IoT devices, (b-d) The number of selected times at each arm for each player, by running
the E2Boost algorithm with constant phase shift setting in the fixed network scenario Fig. 4.

RIS2 is more suitable for IoT 3 than RIS3, i.e., RIS2-UEs-
IoT3 in a line.

Similarly, Fig. 6 shows the allocation results of the E2Boost
algorithm for the constant phase shift setting. We can see that
the average throughput of all players is just about 0.5782,
which is much lower than the optimal phase shift setting. In
addition, player 1 and player 2 disagree on the optimal RIS
since there is a collision between them. The reason is that the
time horizon of the second phase in Algorithm 1 is too short
(i.e., ν2 = 1, 000) to resolve this collision. As a result, the
highest SF for Pattern II is chosen frequently, resulting in low
average throughput. To conclude, Figs. 5 and 6 demonstrate
that the channel gains between the IoT device and the BS not
only rely on the path-loss gain but also depend on the settings
of phase shifts and direction in the RIS.

Fig. 7 depicts the total pseudo-regret of the E2Boost al-
gorithm, the E2Boost algorithm without TS, and the GoT
algorithm in the cases of ν1 = ν2 = 1, 000 and ν1 =
ν2 = 2, 000, when Z = 10 under the optimal phase shift
setting. Other parameters are the same as those in Fig. 5. We
can see that the proposed algorithm has the lowest expected
total pseudo-regret in both cases since it has a small arm
space (i.e., due to the two-stage allocation mechanism) to
explore. In addition, the total pseudo-regrets of all algorithms
in the case of ν1 = ν2 = 1, 000 are lower than those in
the ν1 = ν2 = 2, 000 case. The reason is that a larger
value of ν1 and ν2 indicates that a longer time is needed to
explore all arms, leading to more performance loss. However,
when ν1 = ν2 = 1, 000, the GoT algorithm and the E2Boost
algorithm without TS will not converge since the value of
ν2 is too small for the second phase to resolve the collisions
among IoT devices. More importantly, Fig. 7 validates our
theoretical analysis of Theorem 1, where the total pseudo-
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Fig. 7: The total pseudo-regret via time slot in the cases of
ν1 = ν2 = 1, 000 and ν1 = ν2 = 2, 000 with optimal phase
shift setting in the fixed network scenario Fig. 4.

regret of the E2Boost algorithm increases logarithmically w.r.t.
the time horizon T and is about four times better than the GoT
algorithm.

Fig. 8 compares the average total throughput of the E2Boost
algorithm, the E2Boost algorithm with ϵ = 0 and ϵ = 1
(without WD), the E2Boost algorithm without TS, the GoT
algorithm, and the random selection method in the optimal
phase shift setting with ν1 = ν2 = 2, 000, Z = 10. It
can be seen that the proposed algorithm outperforms the
other algorithms and is close to the optimal solution. By
contrast, the proposed algorithm with ϵ = 0 accounts for
the worst performance since there is no exploration in the
first phase. Meanwhile, the E2Boost algorithm with ϵ = 1
and the E2Boost algorithm without TS is better than the GoT
algorithm, indicating that the E2Boost algorithm with WD can
effectively tradeoff the EE dilemma by sequentially optimiz-
ing the parameter ϵ. More importantly, since the two-stage
allocation mechanism, the E2Boost algorithm has a faster
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Fig. 8: The performance of different algorithms versus time
slot with optimal phase shift setting when ν1 = ν2 =
2, 000, Z = 10 in a fixed network scenario of Fig. 4.
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Fig. 9: The performance of E2Boost algorithm for different
phase shift settings and Rice factors in a fixed network
scenario of Fig. 4.

convergence rate than the GoT algorithm and the E2Boost
algorithm without TS.

Next, we evaluate the impact of the RIS-enabled channel
on the performance of the proposed algorithm. Fig. 9 depicts
the performance of the E2Boost algorithm under the optimal
and constant phase shift setting for different Rice factors
(ζ = 0.5, 1, 4, 10) when ν1 = ν2 = 2, 000, Z = 10.
We can see that the performance of the optimal phase shift
setting is much better than the constant phase shift setting
for different Rice factors. This is because the optimal phase
shift is designed for the centralized UEs. Thus, IoT devices
close to the UEs will also have better performance. On the
other hand, a bigger ζ will result in a higher average total
throughput. This phenomenon can be explained by (3), where
a big ζ means that the channel gain is dominated by the LoS
component, i.e., the directional reflection link of IoT-RIS-BS.
Therefore, the channel gain is dominated by the RIS when ζ
trends to +∞; while ζ trends to 0 mean that the IoT device
only transmits on Pattern II.

C. Random Network Scenario

In the following, we evaluate the proposed algorithm under
the random network scenario. At each MC trial, we regenerate
the locations of the IoT devices uniformly in the circle area of
Fig. 4. Meanwhile, the distance of any two devices is subject
to no less than 5 m. The locations of RISs, UEs, and BS are
set the same as those in Fig. 4.

Fig. 10 compares the average total throughput of different
algorithms in the optimal phase shift setting with ν1 = ν2 =

0.5 1 1.5 2

10
5

0.5

1

1.5

2

2.0784

Fig. 10: The performance of different algorithms versus time
slot with optimal phase shift setting when ν1 = ν2 =
2000, Z = 10 over 103 random network scenarios.
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Fig. 11: (a) A random network scenario in a 200 × 200 m
square area with K = 3, N = 11. (b) The performance of
different algorithms versus time slot with optimal phase shift
setting over 103 random network scenarios.

2, 000, Z = 11 over 103 random network scenarios. It can
be observed that the performance of all algorithms except the
random selection method increases with time slot t. Again,
the E2Boost algorithm has the best performance and a fast
convergence rate. The Q-learning method also exhibits a fast
convergence rate, but it suffers from some performance loss
due to the lack of the non-cooperation game phase to resolve
the collisions among players. Moreover, the gaps between the
optimal solution and these algorithms increase compared with
Fig. 8 in the fixed network case. The reason is that these
algorithms fail to find the optimal RIS for each player under
some extreme network scenarios with the constant parameter
ν2 and the limited time horizon T .

Moreover, we study the performance of the proposed al-
gorithm by considering the case that the number of IoT
devices is larger than that of RISs, i.e., N > K. We first
generate a new random network scenario, as shown in Fig.
11a, where N = 11, K = 3, and the other parameters
are the same as those in Fig. 4. We can see from Fig. 11a
that N = 11 IoT devices are divided into three clusters
by using the k-means clustering method according to their
geographic locations. Fig. 11b compares the performance
of the modified E2Boost algorithm (i.e., Algorithm 2) with
different settings of ν1 = ν2 = {1000, 2000, 3000}, and the
random selection method in the optimal phase shift setting
over 103 random network scenarios of Fig. 11a. It can be seen
that the modified E2Boost algorithm with ν1 = ν2 = 1, 000
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Fig. 12: (a) A random network scenario in a 200 m × 200 m
square area with K = 10. (b) The performance of the optimal
solution, the E2Boost algorithm, the original GoT algorithm,
and the random selection method versus the number of IoT
devices at 103 random network scenarios of the left figure.

has the best performance, and all the algorithms except for
the random selection method can converge to the optimal
allocation. Compared with the results in Fig. 10, the average
total throughput in the network scenario of Fig. 11a is about
2.4350 Mbps, which is slightly better than 2.0784 Mbps in
Fig. 4. This demonstrates that, although the number of IoT
devices increases, the performance gain from the non-RIS-
assisted transmission pattern is insignificant.

At last, we investigate the influence of the number of IoT
devices on the proposed algorithm. The number of RISs is set
to 10 and is placed on a semicircle with a radius of 55 m from
3π/4 to 5π/4, as shown in Fig. 12a. The distances between
two neighboring RISs are equal except for the two pairs that
are located in the middle and both ends. Fig. 12b shows the
performance of the optimal solution, the E2Boost algorithm,
the original GoT algorithm, and the random selection method
versus the number of IoT devices in the optimal phase shift
setting where ν1 = ν2 = 2, 000,K = 10, Z = 10 over 103

random network scenarios of Fig. 12a. It can be seen that the
performance of these algorithms increases with the number
of IoT devices. However, the proposed algorithm is better
than the GoT algorithm and the random selection method
since it has a small arm space to explore. In addition, the
performance gaps between the optimal solution and these
algorithms increase with the number of IoT devices. The
reason is that collision probabilities among players increase
with the number of IoT devices, resulting in more performance
loss.

VII. CONCLUSION AND DISCUSSION

This paper studied the resource allocation problem in a
RIS-assisted hybrid uplink network where several IoT devices
transmit data to the BS. The objective is to maximize the
sum rates of all IoT devices by finding the optimal RIS
and SF for each device. We modeled this problem as a
two-stage MPMAB framework, where the first stage is to
find the optimal RIS, and the second stage is to find the
optimal SF. Then, we proposed an E2Boost algorithm to
tackle this problem by combining the ϵ-greedy algorithm,
TS algorithm, and non-cooperation game method. Therefore,

it can efficiently balance the EE dilemma. Furthermore, we
provided an upper regret bound for the E2Boost algorithm,
i.e., O(log1+δ

2 T ), indicating that the per-round regret will
trend to 0 when T is sufficiently large. In addition, simulation
results demonstrated the effectiveness of the proposed algo-
rithm. More importantly, it is not sensitive to the joint arm
space thanks to the two-stage allocation mechanism, which
can benefit practical applications.

In the system model, we assume that different RISs use
different frequencies, and one RIS can serve at most one IoT
device. A more general scenario is that RIS can reuse these
frequencies and serve multi-IoT devices. Then, two interesting
problems are how to design a mechanism that the UE’ and
IoT device’ signals can coexist in the same RIS and how to
design the RIS-assisted multi-IoT system by estimating the
exact information of the RIS and CSI. These are important
yet challenging problems for future study.

APPENDIX A
PROOF OF THEOREM 1

At each time slot, IoT device transmits on either the Pattern
I or the Pattern II. For the Pattern I, the total pseudo-regret
term Reg

(1)
can be expanded by investigating Regz , where z

is the epoch. Thus, we begin to bound Regz by computing the
probability of event Ez , which is the event that the optimal
assignment a∗ is not adopted in the third phase at epoch z.
We have

Pr(Ez) = Pr
(
Ek

∗
z , Em

∗
z

)
+ Pr

(
Ek

∗
z , Em∗

z

)
+ Pr

(
Ek∗z , Em

∗
z

)
= Pr

(
Ek

∗
z

)
+ Pr

(
Ek∗z , Em

∗
z

)
,

(33)

where Ek∗

z is the event that the optimal RIS is not used at the
end of the z-th epoch of the second phase, and Em∗

z is the
event that the optimal SF is not used at the end of the z-th
epoch of the third phase.

First, we bound the probability that event Ek∗

z holds, i.e.,

Pr
(
Ek∗

z

)
≤ Pr

⌊ z
2 ⌋⋃

j=0

Pe,z−j

+ Pg,z, (34)

where Pe,z is the probability that the optimal assignment is
different from a∗ in the first phase at epoch z, and Pg,z is the
probability that the frequently visited strategy profile is not
a∗ in the last ⌊z/2⌋+1 non-cooperation game phases. Then,
we need to calculate the probabilities of Pe,z and Pg,z before
bounding Regz . In the first phase, we estimate the average
successful transmission probabilities θ̂n,k of all RISs. Assume
i.i.d. rewards Xn,k and each player uniformly explores all K
RISs when event Ek∗

z holds. By adopting the result in [23]
(see Lemma 8), we have

Pe,z ≤ 2NKe−wν1( z
2 )

δ
z +NKe−

ν1( z
2 )

δ

36K2 z, (35)
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where w is a predefined positive constant. Therefore,

Pr

⌊ z
2
⌋⋃

j=0

Pe,z−j

 ≤ 2NKe−
w
2
ν1( z

4 )
δ
z

1− e−wν1(
z
4 )

δ
+

NKe
−

ν1( z
4 )

δ

72K2 z

1− e
− ν1

36K2 (
z
2 )

δ
.

(36)

In the second phase, we investigate the probability that the
optimal strategy profile is not visited frequently. Let vz∗ =
[ak∗, CN ] be the optimal strategy profile in the z-th game
phase and Fz(v

∗) be the number of times the optimal strategy
profile has been visited at the last ⌊ z

2⌋ + 1 game phases.
According to [23] (see Lemma 16), we have

Fz(v
∗) ≜

z∑
i=z−⌊ z

2 ⌋

∑
t∈Gz

I
(
v(t) = vi∗

)
, ∀k ∈ K. (37)

Denote the stationary distribution of the optimal strategy
profile by πv∗ = min

z−⌊ z
2 ⌋≤j≤z

πvi∗ . If 0 < η < 1
2 , then

πv∗ > 1
2(1−η) for a sufficiently large z, we have

Pg,z ≜ Pr

Fz(v
∗) ≤ 1

2

z∑
i=z−⌊ z

2 ⌋

ν2i
δ


≤

(
C0e

− ν2η2

144Tm( 1
8
)
(πv∗− 1

2(1−η) )(
z
2 )

δ
)z

,

(38)

where C0 is a constant and independent of z, πv∗ and η.

Second, we bound the probability that event
(
Ek∗

z , Em∗

z

)
holds. The method is based on the regret analysis of the TS
algorithm [29]. Here, event Ek∗

z means that the player found
the optimal RIS at the end of the z-th game phase. Let Pn

t,z

be the probability that player n fails to find the best SF. Since
players can find the optimal SF in the third phase only when
event Ek∗

z holds, we have

Pr
(
Em

∗
z |Ek∗z

)
≜

N∑
n=1

Pr

 M∑
m=1,m ̸=m∗
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W j
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2
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ν32
i
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2
−Dkl
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c∗mθ∗n,m∑M
m=1 cmθn,m
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∥ 1

2
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i=1 ν32

i

(b)

≤
N∑
n=1

2
−2

(
c∗mθ∗n,m∑M

m=1 cmθn,m
− 1

2

)2

(2z+1−2)ν3

(c)

≤ N2
− (M−2)2(2z−1)ν3

M2 ,
(39)

where Dkl is the KL-divergence and W j
n,m∗ is the number of

times that the m-th suboptimal SF has been selected by player
n up to the j-th epoch. Inequality (a) holds by using the large
deviation theory [41]. Inequality (b) follows from the Pinsker’s
inequality, i.e., Dkl(p∥q) ≥ 2(p−q)2. Inequality (c) holds due
to Mc∗mθ

∗
n,m ≥

∑M
m=1 cmθn,m, considering the worst case

that each SF has the same probability of being selected. There-
fore, by using Pr

(
Ek∗

z , Em∗

z

)
= Pr

(
Em∗

z |Ek∗
z

)
Pr
(
Ek∗

z

)
,

we have (40) which is given in the top of next page.

Then, we continue to bound Regz based on (36), (38) and

(40). For z > z0, we have

Regz ≤ NΓmaxν2z
δ + Pr(Ez)NΓmaxν1z

δ + Pr(Ez)NΓmaxν32
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(41)

where Γmax = maxn,i µn,i is the maximum real expected
reward among all players’ arms. The first inequality holds
since we consider the worst case that each player contributes
the maximum regret Γmax. The second inequality follows by
using (36) and (38). The last inequality establishes on the facts
that, for z > z0,

max

{
C0e

− ν2η2

144Tm( 1
8
)

(
πv∗− 1
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( z
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δ
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}
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1

2
(42)

and
2−

(M−2)2(2z−1)ν3
M2 ≤ 2−ν3(2

z−1). (43)

Finally, let Z be the total number of epochs. The total
pseudo-regret Reg

(1)
in Pattern I can be bounded as

Reg
(2) (a)

≤
Z∑
z=1

Regz
(b)
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z0∑
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ν32
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Z∑
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δ + ZNΓmax(6NK + 1)ν3

(d)

≤ NΓmax(ν1 + ν2) log
1+δ
2

(
T

ν3
+ 2

)
+NΓmaxν32

z0+1

+NΓmax(6NK + 1)ν3 log2

(
T

ν3
+ 2

)
= O(log1+δ2 T ),

(44)

where (b) holds since (41) for z > z0 and the worst case
of Γmax pre-round regret for z ≤ z0. Inequality (d) follows
from

∑Z
z=1 z

δ ≤ Z1+δ and the fact that T ≥
∑Z−1

z=1 ν32
z ≥

ν3(2
Z − 2), which gives Z1+δ ≤ log1+δ

2 (T/ν3 + 2).

For the Pattern II, the total pseudo-regret Reg
(2)

can be
bounded according to the regret analysis of the MTS algorithm
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Ek∗z , Em

∗
z

)
≤ N2

− (M−2)2(2z−1)ν3
M2

1− 2NKe−
w
2
ν1( z

4 )
δ
z

1− e−wν1(
z
4 )

δ
+

NKe
−

ν1( z
4 )

δ

72K2 z

1− e
− ν1

36K2 (
z
2 )

δ
+

(
C0e

− ν2η2

144Tm( 1
8
)

(
πv∗− 1

2(1−η)

)
( z
2 )

δ
)z . (40)

in [28], i.e.,

Reg
(2) ≤ Pa(1 +ϖ)

N∑
n=1

∑
an∈M

log2 T

DKL(an, a∗n)
∆n,an

, (45)

where ϖ ∈ (0, 1) and DKL(·) is the KL-divergence. Term Pa

is the active probability of the UE.
To sum up, the total pseudo-regret Reg of Algorithm 1 is

given by

Reg =Reg
(1)

+Reg
(2)

≤NΓmax(1− Pa)

(
2(ν1 + ν2) log

1+δ
2

(
T

ν3
+ 2

)
+(6NK + 1)ν3 log2

(
T

ν3
+ 2

))
+ Pa(1 +ϖ)

N∑
n=1

∑
an∈M

log2 T

DKL(an, a∗n)
∆n,an

.

(46)

APPENDIX B
RIS’S DIRECTION AND ELEMENT’S LOCATION

We first determine the direction of the RIS in XY -plane
by computing the angle ∠φ between X-axis and the RIS,
as shown in Fig. 3. Given the coordinates of B = (xB, yB),
R = (xR, yR), U = (xU, yU), we have two vectors

−→
RB =

(xB − xR, yB − yR) and
−→
RU = (xU − xR, yU − yR). Accord-

ing to the plane analytical geometry theory, we can obtain the
direction vector

−→
RC, i.e., the bisector of angle ∠BRU, as

1) If cos⟨
−→
RB,

−→
RU⟩ ≥ 0, then

−→
RC = (xRC, yRC) = −

−→
RB

|
−→
RB|

+

−→
RU

|
−→
RU|

=

(
xR − xB

|
−→
RB|

+
xU − xR

|
−→
RU|

,
yR − yB

|
−→
RB|

+
yU − yR

|
−→
RU|

)
;

2) If cos⟨
−→
RB,

−→
RU⟩ < 0, then

−→
RC = (xRC, yRC) =

−→
RB

|
−→
RB|

+

−→
RU

|
−→
RU|

=

(
xB − xR

|
−→
RB|

+
xU − xR

|
−→
RU|

,
yB − yR

|
−→
RB|

+
yU − yR

|
−→
RU|

)
.

Thus, the direction of the RIS in XY -plane (i.e., the normal
vector

−→
AR of line RC) is

−→
AR = (−yRC, xRC). It is easy to

obtain the angle ∠φ by

∠φ = − arctan

(
xRC

yRC

)
. (47)

Next, based on the angle ∠φ, we can compute the location
of each element in the RIS, i.e.,

x(l1, l2) = (l1 − 51) dv cos∠φ+ xR,

y(l1, l2) = (l1 − 51) dv sin∠φ+ yR,

z(l1, l2) = (l2 − 51) dh + 10,

(48)

where dv = dh = 0.01 are the offsets in RIS’s horizontal and
vertical planes, respectively. Constant 51 is the 51-th row or
column elements in the RIS and constant 10 is the height of
the RIS. Symbol (l1, l2) are the integers in [0, 101], standing
for the index ceil of the RIS elements’ matrix.
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